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1
CHAPTER 1INTRODUCTIONSequening of DNA (omplementary DNA) is inuened by an additive ran-dom proess whih inreases the potential for errors over DNA sequening. In ad-dition, the proess by whih DNA lones are seleted for sequening introdues re-dundany. For these reasons, automated software tools are neessary to lassify largedata-sets of DNAs into groups that roughly orrespond to genes. Thus, a ruial toolneeded for this is a omputer appliation to form lusters based on sequene similar-ity from the raw DNA sequene data. This thesis presents the design and evolutionof a program that has been reated to aomplish this task with the harateristisof exibility, eÆieny, and auray. Although there are several existing softwaretools [27℄ [20℄ [2℄ [21℄ available that perform geneti sequene lustering aurately,this program is unique in its high degree of exibility and in its omputational ef-�ieny. Furthermore, the program is non-proprietary and may be freely obtainedfrom our projet web site (http://genome.uiowa.edu).An EST, or expressed sequene tag [1℄, is most generally a sequene obtainedby performing a single read of a random omplementary DNA (DNA) lone. Aspei� type of EST sequened from the 3' end of a DNA has the unique propertythat it is analogous to a �nger print { it an readily be used as a unique identi�er for



2a gene. Thus, high-throughput gene disovery projets generate large numbers of 3'ESTs, in an e�ort to �nd new genes.Clustering is the proess of partitioning a set of elements into meaningfulgroups (lusters) so that members of eah group are more similar to eah other thanto members of any other group. In the ontext presented here, ESTs and otherforms of geneti sequene are the elements being lustered and luster membershipis determined based on sequene similarity. The ultimate goal is to partition theelements so that eah luster represents all known geneti information for a singlegene or gene family. The importane of this result bears on several aspets, but thepriniple of these is reating non-redundant indies of genes. These indies are anessential tool for assessing novelty rates and guiding future gene disovery e�orts.An additional important use of lustering is to identify EST sequenes thathave a high potential of being derived from an alternative transript of a known(or unknown) gene. A gene, as ontained in genomi DNA, an often enode theinformation neessary to produe multiple proteins. The genomi DNA is proessedby the ell into a messenger RNA (mRNA) transript that in turn produes a protein.Sine ESTs are derived from post-splied mRNA, they provide a onvenient way toidentify di�erent gene transripts. Analysis of the onsisteny of the sequenes in aluster an identify andidates that possibly represent alternative transripts. Furthersequening and genomi sequene data an then provide more thorough veri�ation.A brute-fore, exhaustive solution to the lustering problem is not, however,



3omputationally feasible. An O(n2), where n is the number of sequenes, omputationis required to identify all sequene similarities. This may be a suÆient approah for100s or even a few 1000s of ESTs, but it annot possibly sale to data sets of millionsof ESTs. For data-sets of that size, heuristis must be employed to simplify theomputation. The task is to simplify the omputation enough to be pratial whileretaining suÆient auray to provide meaningful results.The lustering program disussed in this thesis has been implemented andproven to ahieve both auray and performane. It has been developed over theourse of four years and has had three major releases. Eah release has built uponthe prior by inorporating new funtionality and inreased performane. The �rstversion of the tool [26℄ was developed by Professor Thomas Casavant and releasedin Fall 1998. The two subsequent versions have been developed by Kevin Pedrettiunder the supervision of Professor Casavant. The robustness of this program has beendemonstrated by its daily use in the prodution pipeline of large-sale gene disoveryprojets under way at the University of Iowa. Its use has resulted in the estimateddisovery of more than 40,000 new genes in three mammalian speies (human, mouse,and rat) [10℄.Chapter 2 provides the biologial bakground neessary to understand ESTlustering. Chapter 3 is omprised of a onise problem statement. Chapter 4 dis-usses the high-level approah used in the three releases of the program. Chapter5 gives spei� implementation details of eah release. Chapter 6 presents results



4obtained by using the program inluding auray and performane measurements.Finally, Chapter 7 onludes with an outline of diretions for future development.The appendix lists the soure ode for the latest release, UICluster 3.0.



5
CHAPTER 2BACKGROUNDThis hapter will present the biologial bakground neessary to understandthe basis for expressed sequene tag (EST) sequening [1℄ and why the lustering ofESTs is important. The last setion of the hapter will present a survey of other ESTlustering programs. 2.1 Biologial Bakground2.1.1 Gene StrutureCurrent de�nitions of genes are inadequate and ambiguous in desribing her-itable units of a genome. Here, a gene is de�ned as a well strutured and loalizedregion in the genome that enodes the information neessary for produing one ormore proteins. A gene is the basi unit of heredity, passing along traits suh as eyeolor and diseases suh as ysti �brosis. Having an extra gene, missing a gene, orhaving a mutated gene are some of the mehanisms by whih geneti diseases anmanifest themselves. However, disease inheritane is ompliated and is not yet fullyunderstood. There are higher level interations among genes and other struturesin the genome that play signi�ant roles. Disease expression is also inuened bythe environment. Understanding every gene in the human genome is an antiipatedby-produt of the urrent sequening e�orts, however this goal will take deades to



6ahieve.The genome onsists of DNA, whih is the double-helix moleule loated inell nulei. An organism's genome is loated in the nulei DNA of eah of its ells.Figure 2.1 shows the struture of a partial double-stranded region of DNA. Thedouble-helix struture an be thought of as taking a ladder and twisting it. Eah rungis omposed of one purine base, adenine (A) or guanine (G), and one pyrimidine base,ytosine (C) or thymine (T). Adenine exlusively pairs with thymine and guanineexlusively pairs with ytosine. Eah rung in the double-helix struture is ommonlyreferred to as a base pair (bp).

Figure 2.1: DNA Double Helix (adapted from [33℄)
The human genome is made up of 23 DNA moleules, alled hromosomes,ontaining an estimated 3x109 base pairs. These hromosomes are urrently estimatedto ontain between 30,000{40,000 protein oding genes [17℄. An abstrat view of agene's struture is shown in �gure 2.2.A ell proesses this struture by transribing it (from the transription start to



7
Promoter

Transcription

Start

5’ UTR
Exon

Intron

3’ UTR

GCCGCCGCC   CCCTTCTCCAACAGGTGAGTGAGATG

CTCCCAGCCCTGCC

ATCCCCATGCC   GGGCCCCTTGA

GCAGAAACAATAAAACCA

Poly-A signal

Stop Codon

Acceptor site

Start codon Codons Donor site

Figure 2.2: Gene Struture (adapted from [23℄)the Poly-A signal) into mRNA (messenger RNA), and then proessing the mRNA byonatenating the highlighted regions alled exons. The �nal produt represents theinformation neessary to synthesize a single protein moleule. The removed regions,represented in the �gure by thin lines are alled introns. Aeptor and donor sites,loated in the introni regions and anking eah exon are the signals used by theellular mahinery to identify exon boundaries and aid in the onatenation proess.



82.1.2 Alternative SpliingConatenation appears to be a probabilisti proess and exons are sometimesskipped by the ell's mahinery, being left out of the �nal mRNA produt. Thisphenomenon is a mehanism by whih a single gene an be translated into multipletransripts, eah oding for a di�erent protein. Approximately 30-40% of the genesin the human genome are thought to have multiple transripts [17℄. Figure 2.3 showssome examples of alternative spliing.
Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

Exon 1 Exon 3Exon 2

A) Three exons spliced together

B) Exon 2 skipped

C) First portion of exon 2 skippedFigure 2.3: Alternative Spliing
2.1.3 Genome SequeningGenome sequening is the proess of identifying the base pair sequene of everyhromosome in an organism's genome. The exat details of this proess [24℄ are notimportant for understanding this thesis. However, it is important to understand the



9general nature of this proess.Automated sequening mahines have been developed to enable genome-level,high-throughput sequening projets to be feasible. These mahines arry out manysequening reations (a hemial reation) in parallel. Current state-of-the-art teh-nology allows for roughly 500-1000bp to be obtained in eah sequening reation.However, these reations are error prone and tend to beome even more error-proneas sequening lengths inrease. There are three errors that an our: bases an beinserted, deleted, or misread. Examples of these three events are shown in �gure 2.4.Sequening errors sometimes our in groups, suh as a run of multiple bases beinginserted/deleted. Also, the error-rates at the beginning and end of a sequening re-ation are relatively higher than the error rates in the middle of a reation (e.g. the�rst 100bp and last 100bp of a reation will have more errors).
True Sequence: TAGATTACAG

TAGAT ACAG-

TAGAT TACAGA

TAGAT ACAGA

Deleted Base:

Inserted Base:

Misread Base:Figure 2.4: Insertion, deletion and misread errors
For this reason, a given region of the genome must be sequened many timesbefore a high-quality onsensus sequene an be formed. The urrent standard ofthe Human Genome Projet is to have eah base sequened eight times (8x overage)



10before alling it �nished. 2.1.4 EST SequeningAn EST (expressed sequene tag) is a speial type of sequene that is usefulfor high-throughput gene disovery. Genome level sequening produes the base pairsequene of an organism's genome but does nothing to identify where the genes areloated. Sine less than 5% of the human genome odes for genes [17℄, identifying thegenes amounts to �nding a needle in a haystak. Gene predition programs suh asGensan [7℄ and GRAIL [14℄ an be used to loate and omputationally predit genestruture (where the exons are), however they are limited in their auray. EST se-quening provides a shortut to aurately and eÆiently identifying genes diretly bysequening the omplimentary DNA (DNA). DNA has the introni regions removedand ontains only the onatenated transript of a gene.Figure 2.5 shows a high level overview of EST sequening [1℄. To prepare forEST sequening, mRNA moleules are extrated from ells and onverted into DNAthrough reverse transription [5℄ [34℄. The DNAs are then loned into vetors, andeletroporated into bateria for growth, ampli�ation, and storage. A olletion ofsuh DNAs is refereed to as a library. Eah DNA library potentially ontains manyunique and previously undisovered gene transripts. However signi�ant redundanywithin a library (multiple opies of the same DNA) and between libraries is normal.High throughput EST sequening for gene disovery involves sequening the3' untranslated region (UTR) of randomly hosen DNA transripts from a DNA
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1) Genomic DNA (Chromosome)

Transcription

2) mRNA

Isolate mRNA

In Cell

In Tube

3) mRNA
3’5’

“Reverse Transcription” (Imperfect)

5’3’

3’5’

4) cDNA

5) EST SequencingFigure 2.5: High-level overview of EST sequeninglibrary. The sequene is obtained by performing a single sequening reation, not themultiple reations as disussed in the previous setion. Empirial studies have shownthat the error rate for EST sequening is approximately 5% for misread errors, and1-2% for insertion/deletion errors [6℄.The 3' UTR sequene is the most divergent [1℄, and thus the most usefulportion of a transript for identi�ation purposes. It is on average 750bp long. Theprobablility of another gene having the same 3' UTR is extremely low. The use ofa poly-T primer during reverse transription allows for the preferential seletion ofDNAs with a poly-A tail at the 3' ends. The presene of this feature allows forsequening to usually start from a known position (at the poly-A site).



122.1.5 EST ClusteringThe massive number of EST sequenes generated by high-throughput genedisovery projets need to be lustered into groups based on sequene similarity.Ideally, eah luster will exlusively ontain all of the sequened ESTs for a partiulargene. The results of doing this are used to assess the novelty rate of new sequenesand provide feedbak information to the sequening pipeline. If the novelty ratesreported by lustering (roughly equal to the gene disovery rate) fall below a ertainthreshold, laboratory proedures an be performed to �lter out already sequenedtransripts from a DNA library [5℄.Comparing pairs of ESTs and looking for similarity is the basi operation tolustering. This omparison is omplex beause of the single-pass nature of ESTsequening. As was already mentioned, bases an be inserted, deleted, or misread.This means that some form of edit distane alulation is required to optimally derivethe similarity between two sequenes.From the omputational perspetive, an EST is a harater string made up ofletters from the alphabet A, C, T, G, X, N where A, C, T, and G represent DNAbases and X and N represent masked and ambiguous regions, respetively. A typialEST sequene is shown in �gure 2.6. Masked regions denote bases that have beenidenti�ed to be repetitive or ontain low omplexity. At least 45% of the humangenome onsists of repetitive elements [17℄. If masking were not performed, spurioussequene similarities would be found. Ambiguous regions denote bases that ould not



13be aurately determined by the sequening mahine or base alling program. Thereare examples of both of these types of regions in �gure 2.6. 3' ESTs are typiallybetween 400{1000bp in length. This is a limitation of the urrent gene sequeningtehnology and the lengths may grow larger in the future.
>UI-R-A0-ae-b-09-0-UI
TTTTTTTTTTTTTTTTTGATTTTCAATGATAAACTTTTATTCTGAATATACTGTTTTTGCACAAGATTTA
ACACAACATTTTCTGGGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCAAAATGTGTTCA
TCCGACTAGTTAATTTCCACAAAAGTGTCCAGAGAACATAATAAGGGGGAGAAAAAAAATCTGTTGTTCA
CAAAAGCCACTTGGCGTTTTGCTTGATGCACAATGAGCATTTCATGAAGAGAATCCCTAAAACATGATCC
CACAGTCATACCGCACAAGGAAAGAACAGCTTGGCCAGGTCACATTGGAAACTCAATTGGCATTTACACC
GGACAGCATGCCAGGAGTCTCAGTGGAATTTCCATGGTTCTTTTTTGTGTGAACTAGAAACAAGGTATAC
GAAACCTCCCGTAACAGCAATCTATTTCTGCAAAATTCTGGCCATTTTCATGACCTGATAGTTCTGTTTT
AGTGATTTGCTCTTTACAGAAATATACACCAGATAGTGACCATATCAACATTCTGCCATGGAGAACAATG
CAAGTTCCAGCGAATGATAAAATAAFigure 2.6: Example EST Sequene

2.2 Survey of Other EST Clustering ToolsThis setion briey disusses other EST lustering tools.2.2.1 NCBI UniGeneUniGene [27℄ is an experimental system used at the National Center for Bioteh-nology Information (NCBI) for automatially partitioning EST and other sequenesinto non-redundant sets of gene-oriented lusters. Ideally, eah UniGene luster on-tains sequenes that represent a unique gene, as well as related information suh asthe tissue types in whih the gene has been expressed, and map loation.The UniGene lustering proedure is broken down into multiple steps, witheah stage adding less reliable data to the results of the proeeding stage. At eah



14stage, an essentially NxN sequene omparison is performed to generate a weightedgraph where the verties are sequenes and the edges are weighted aording to se-quene similarity. Sequenes with edges exeeding a threshold are merged into thesame luster. A detailed desription of the stages is given at(http://www.nbi.nlm.nih.gov/UniGene/build.html).While the build proedure is publi, the atual sripts and tools used are notreadily attainable nor are they exible enough to be used in an environment outsideof NCBI. In addition, it appears as if the proedure is started from the beginningeah time the UniGene index is built. However, NCBI UniGene is probably the mostwidely used gene index and is one of the standards to whih our lustering proedurewill be ompared. 2.2.2 TIGR Gene IndexThe TIGR Human Gene Index [2℄ uses a strit assembly method to grouphighly related sequenes into lusters. The method disregards inonsistent matheswhen forming lusters in favor of on�dene based on perfet or near perfet sequeneoverlaps. This design hoie means that sequenes possibly representing alternativesplie forms will not be onsidered for luster membership. However, the bene�tis high on�dene that the sequenes in any given luster are truely related. Thedrawbak is that underlustering will our (i.e. to many lusters) and the numberof genes will be over estimated.



152.2.3 ICAtoolsThe ICAtools [21℄ are a set of programs that are designed for doing mediumsale DNA sequene lustering. The program inputs �les of DNA sequene infor-mation and produes an index �le whih links similar sequenes together in lusters.ICA is an aronym for Inremental Clustering Algorithm whih desribes the waythe program builds its index one sequene at a time. The inremental nature of theprogram is very desirable sine it eliminates the need to start from the beginningwhen only a few new sequenes need to be lustered. The program also uses thenotion of small, exat mathes between sequenes in a �ltering step before doing aomparison. The default size for the exat math length is six bases. Two sequenesare only ompared if at least one of these short regions is in ommon between them.This saves by avoiding sequene omparisons, a time-onsuming operation, that haveno hane of being similar.The ICAtools are freely available from the Internet(http://www.hgmp.mr.a.uk/Registered/Option/iatools.html).2.2.4 SANBI STACKThe STACK [20℄ lustering system aims to luster ESTs and full-length DNAsequenes into high-quality lusters. The di�erene between STACK and UniGeneis that STACK attempts to generate onsensus sequenes for eah luster using thephrap [13℄ program. These onsensus sequenes an be used to detet alternativetransripts of the same gene. Also, the developers laim that the STACK gene index



16is generated more arefully and has a greater degree of error heking than UniGene.The d2 luster [8℄ program is used to form what they desribe as a "loose" luster-ing based on the total number and multipliity of (possibly disontiguous) mathing6-base words, rather than sequene alignment. The goal of loosely lustering is topreserve information about alternative splie forms. A post proessing step, per-formed by another program alled raw [9℄, is used to identify the possible multipletransripts ontained in a luster. Their analysis [20℄ shows that their lustering isbetween 13{16% less fragmented than UniGene lusters. Fragmentation ours whentwo distint lusters exist that should atually be a single luster.The STACK tool is available freely for aademi use from the Internet(http://www.sanbi.a.za/CODES).
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CHAPTER 3PROBLEM STATEMENTLarge-sale gene disovery projets require rapid and aurate lustering ofEST sequenes for maximum eÆieny [11℄. Novelty rate estimates (i.e. the numberof lusters divided by the total number of ESTs sequened) provided by lusteringare a key part of the feedbak loop to a gene disovery sequening pipeline. Thisinformation is used to deide when to perform serial-subtrations, whih have beenshown to dramatially inrease novelty rates [5℄. High overall novelty rate is theprimary goal of these projets. Furthermore, lustering results an provide valuableinsights into gene family relationships and lues to the identi�ation of alternativespliing sites.These important uses of lustering make it imperative that the tehnique ho-sen be both eÆient and aurate. If done in a naive fashion, suh as a NxN om-parison, the problem is intratable for any reasonably sized data set. On urrentPC hardware (e.g., 600MHz Pentium III), benhmarks have shown that a Smith-Waterman [29℄ omparison of two EST sequenes requires on average 5 milliseonds.For a data set of 1 million ESTs, an O(n2) lustering would require approximately80 years. However, typial data sets will be highly redundant and the number oflusters will be muh less than the number of sequenes lustered. A better approah



18would be an algorithm that sales proportionately to the number of lusters. Suhan algorithm would still be O(n2) for the worst ase (i.e., every sequene is a luster)but would be muh faster in pratie. Clearly, there are signi�ant opportunities toutilize heuristis and other optimization tehniques to speed this omputation. How-ever, areful evaluation is neessary to be on�dent that the approximated lusteringresults math as losely as possible the solution that would have resulted from anexhaustive approah.There are several existing EST lustering solutions in use at di�erent labsaround the world. Priniple among these are NCBI UniGene [27℄, ICATools [21℄,TIGR Human Gene Index [2℄, and SANBI STACK [20℄. These tools have alreadybeen disussed briey in the previous hapter. While these tools are useful, theyare often not exible enough to be generally useful to outside laboratories. Thereis a need for a lustering program that ombines the strengths of these programs,but is exible enough to be useful in a wide-array of appliations and laboratoryenvironments. Furthermore, there is a need for a program that has higher performaneand is more salable than the urrently available tools. Parallel exeution, distributingboth omputation and memory, along with improved heuristis, are methods thatould be used to ahieve this.The task of this thesis is to desribe the design and implementation of a high-performane, aurate, and exible lustering software appliation. The algorithmsemployed have been hosen to optimize the trade-o� between performane and au-



19ray. Of partiular importane is the ability to handle large data sets (more than 1million ESTs) with reasonable omputation time on ommodity PC hardware. Fur-thermore, the appliation has been made exible by using arefully hosen run-timeparameters. A novel goal of the software pakage is to be easily adaptable to thelustering needs of other projets.
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CHAPTER 4APPROACHThe �rst setion of this hapter presents the fundamental approah we havetaken to the lustering problem. The important harateristis of our solution aredisussed from a high-level standpoint. The seond setion of the hapter disussesthe optimization tehniques we have employed in our solution.The lustering appliation that implements our approah has evolved over theourse of four years and has been released to the publi as three major versions. Eahsuessive release has built upon the previous and implemented more of the detailsdisussed in this hapter. When neessary, a note will be made of what version of theappliation a partiular feature was �rst inorporated.4.1 FundamentalsThe de�nition of a luster and the riteria for luster membership are funda-mental parameters that �rst need to be determined. NCBI UniGene [27℄, for example,de�nes a luster as ontaining all known geneti information for a given gene. Thisinludes alternative splie forms of a gene. Cluster membership is determined in amulti-stage, graph-based approah by whih lusters are formed based on sequenesimilarity and known annotations. Essentially an NxN omparison is performed toonstrut a graph where edges between sequenes are weighted with the similarity



21sore. SANBI STACK [20℄ takes a similar approah, �rst generating a graph of se-quene similarities. However, instead of using a traditional sequene alignment todetermine similarity, the riteria used is the multipliity and number of 6 base wordsin ommon between sequenes. Both of these approahes are valid and useful. How-ever, we take a di�erent approah that avoids the O(n2) omparisons for typial datasets. The advantage is substantially improved performane enabling the ability to rune�etively on ommodity PC hardware. The risk is generating less aurate results,although our analysis has shown this not to be the ase.Instead of pre-omputing all sequene similarities before forming the lusters,we take a more dynami, inremental approah to the problem. Sequenes are readone at a time from an input �le and ompared against one representative sequenefrom every existing luster. These representative sequenes are alled primaries.The non-primary sequenes of a luster are alled seondaries. The sequene beinglustered is added to a luster if it is found to be similar to the luster's primary. Ifthe sequene is similar to no existing lusters, it beomes the primary sequene of anew luster.As with existing lustering appliations, the omputation beomes more om-plex as the data sets lustered grow larger. However, for our approah the om-putation sales proportionally to the number of lusters rather than the number ofsequenes sine only the luster primaries are ompared against. This produes a largebene�t beause EST data sets typially have signi�ant redundany, meaning that



22the number of lusters will be muh lower than the number of sequenes lustered.4.1.1 Program ParametersThis setion disusses the parameters and optional features of our approahthat are on�gurable by the user. These parameters a�ord the user a large degreeof exibility when performing a lustering. Di�erent option sets are appropriate forobtaining di�erent types of results. Additionally, the appliation an be exeutedwith di�erent parameters several times for the same data set and the results an beompared.4.1.1.1 Inremental ClusteringA key feature that has been inorporated sine the earliest version is the abil-ity to perform inremental lustering. In this mode of operation, one or more �lesontaining the results of previous lusterings an be input to the appliation andused when performing a new lustering. This is more eÆient than reproessing allof the data from the beginning as do the graph-based approahes of UniGene [27℄,STACK [20℄, and TIGR [2℄ gene index. Notably, ICAtools [21℄ provides similar inre-mental lustering funtionality but requires that eah luster be stored in a separate�le. In addition, inremental lustering allows other analytial proesses, suh astraking luster growth over time. Our approah is to allow eah �le to ontain morethan one luster, simplifying the administrative tasks of running the appliation.Previous output �les of our lustering program an be diretly input bak into the



23program when performing a new lustering. This feature an also be used as a rudeform of hek-pointing by splitting a large data set up into piees and lustering eahpiee inrementally.4.1.1.2 Similarity CriteriaThe similarity riteria is spei�ed by the user as N out of M , meaning thatat least one mathing window of M bases with no more than M �N errors must bepresent for two sequenes to be onsidered similar. If the number of errors permitted isrelatively modest (95% identity), this riteria an be evaluated more quikly than theoptimal (semi-optimal) alignment methods of UniGene, ICAtools, and TIGR GeneIndex. Still, evaluating this riteria is a time onsuming operation and should beavoided as muh as possible. This is the goal of our optimization shemes disussedin setion 4.2.For estimating the number of genes represented in a data set, the N out ofM riteria should be hosen to allow for enough errors so that true similarities arenot missed while being rigorous enough that false similarities are not found. Un-fortunately, there is no pre-determined method to selet N and M and empirialinvestigations by expert biologists are neessary to determine whih values to use.However, one may wish to use the lustering appliation for purposes other than gen-erating gene indies. A "looser" lustering (underlustering), similar to that produedby STACK [20℄, an be performed by allowing more errors when one is looking forevidene of alternative splie forms. Conversely, a "tight" lustering overlustering)



24an be performed by allowing fewer or no errors. This is useful when one wishes tobe highly on�dent that members of a luster are related, with the onsequene ofmissing some true similarities. The strit alignment based lustering of TIGR's geneindex strit alignment based lustering is an example of this mode of operation.4.1.1.3 Repiking PrimariesA potential drawbak of the luster primary onept is that the hosen primarymay not be a good representative for the luster as a whole. For homogeneous 3' ESTdata, the best representative is most often the longest sequene in the luster sineeah sequene theoretially starts from the same position. However, by default ouralgorithm uses the �rst disovered member of a luster as the primary, disregardinglonger sequenes that are added to the luster later. This works well as long as theinput sequenes are all approximately the same size or if they are pre-sorted intodesending order by size. Sine this is usually not the ase, an option is availableto repik the primary every time a sequene is added to the luster. If the sequenebeing added is longer than the existing primary, it beomes the new primary for theluster. In suh a ase, all of the existing seondaries are ompared against the newprimary. Sequenes not mathing the new primary, alled orphans, are made note ofin the appliation's output. Over time, orphan sequenes an be re-adopted as newprimaries are piked. At the end of lustering, any remaining orphans are intendedto be examined by a human.



254.1.1.4 Virtual PrimariesAs a more extensive attempt to address the limitations of the luster primaryonept, the latest version of the program ontains an option to generate a virtualprimary for eah luster. Every time a sequene is added to a luster, a hek isperformed to see if the virtual primary an be extended. There are �ve possibleases that are onsidered: an internal hit, front extension, tail extension, tail andfront extension, and no extension. An internal hit is when the added seondary isompletely ontained in the virtual primary. An extension ours when the addedseondary an make the virtual primary longer at its front, tail, or both. For this toour, there an be no non-mathing regions (taking into aount some error) of theoverlap between the virtual primary and seondary. If there are non-mathing regions,then the sequene is added to the luster but the virtual primary is not hanged. Thesequene should be inspeted later to determine the ause of the non-onsistent hit.Suh sequenes may be good andidates for representing an alternative transript ofthe gene the luster represents.If the virtual primary parameter is enabled, all sequene omparisons are per-formed against the virtual primary instead of the primary. However, the lusterprimary is also maintained and updated to reet the longest sequene in the lusterif the repik primary parameter is enabled.



264.1.1.5 Reverse Complement ChekingA rare error that ours when doing EST sequening is that the opposite strandof a DNA transript is sequened in the wrong diretion. It is neessary to reverseomplement suh a sequene before it an be ompared to other sequenes that weresequened in the orret orientation. To identify these errors, an optional parameterwas added to the seond version of the program that heks the reverse omplimentof an input sequene if no math to a luster primary is found in its original form.An additional important use of this feature is for lustering 5' EST and full-length DNA sequenes along with 3' ESTs. These types of sequenes must be reverseomplimented before any overlaps with 3' EST sequenes an be ruled out.The performane impliation of this feature is that the omputation time maydouble, sine the luster spae is potentially searhed twie. In pratie, the penaltyis not this severe sine a reverse ompliment math is a relatively rare ourrene.4.1.1.6 Extended SearhA parameter that was added in the seond version of our lustering appliationis the ability to do an extended searh of the luster primaries for eah sequene beinglustered. By default, a sequene being lustered is greedily added to the �rst lusterprimary that it is found to math. Enabling this parameters makes the searh ofthe luster primaries exhaustive. If any mathes are found, the sequene is added tothe luster with the best mathing luster primary and all other mathes are noted



27in an output �le. This feature an be useful for identifying potential alternativetransripts. Two separate lusters that are linked together by multiple sequeneshave a high potential of either being alternative transripts of the same gene ormembers of the same gene family. Alternatively, the linking sequenes ould behimeri{\false" sequenes ontaining partial regions of separate transripts ausedby library onstrution errors. Human inspetion of suh ases is neessary to resolveany ambiguity.The number of sequene omparisons required when performing an extendedsearh is potentially muh greater than performing the greedy searh. However, theglobal hash table disussed in setion 4.2.2 is e�etive in �ltering the searh spae byeliminating primaries that an not possibly meet the similarity riteria. This lessensthe overhead substantially.4.1.2 Organization of OutputsThe main output of applying our lustering approah to a set of sequenes isa �le ontaining the identi�ed lusters. This �le ontains both the sequene data andluster hierarhy. Depending on the parameters hosen, other �les are also output.There is a \rejet" �le that ontains sequenes that have been identi�ed to be toolow quality to luster. There is an \orphan" �le that lists orphaned sequenes if therepik primary option is enabled. The \hits" �le lists all of the luster primaries hitfor eah sequene lustered if the extended searh option has been enabled. Finally,there is an output �le written for eah luster �le input into the appliation when



28performing an inremental lustering.4.2 OptimizationA unique aspet of our appliation is its adaptability to the omputing hard-ware that is being used to run it. A drawbak of the NxN omparison methodsemployed by STACK and UniGene is that high-end omputers are required for run-ning them. The d2 luster [8℄ appliation used by STACK was originally designedto run on a MasPar super-omputer, and has reently been ported to other platformsinluding SGI Origin2000 and Linux PC lusters. They report that a 126 CPU SGIOrigin2000 is used for building the STACK gene indies [20℄. Our hash optimiza-tion shemes allow the user to intelligently balane the amount of memory used andomputation time required by on�guring run-time parameters appropriately. Theprogram is able to run eÆiently on ommodity hardware with modest amounts ofmemory. In addition, multiple proessors an be taken advantage of to distribute thememory and omputational requirements of lustering if required.4.2.1 HashingA key optimization of our sequene omparison funtions is to initially searhfor short, exat mathes by looking for hashes in ommon between the input sequeneand the luster primaries. A hash is an integer that uniquely represents a string ofbases. The length of the string of bases to use, �, is spei�able by the user at run-time.For example, the length � = 8 string of bases fGCCACTTGg may be represented bythe integer 48406. A sequene is hashed by generating a unique integer for every length



29� window of the sequene. The hashing optimization is based on the priniple that it isfaster to ompare integers than to perform a string omparison. Integer omparisonsare primitive operations implemented in hardware for every modern CPU, while stringomparisons are usually implemented as library alls. In addition, hashes only needto be generated one for eah sequene but are used many times. This amortizesthe ost of generating the hashes over the program's exeution. The trade-o� is thatmemory usage inreases beause the hash lists for eah luster primary need to bestored in memory. Memory usage will sale proportional to the total number of basesontained in the luster primaries, sine a hash needs to be stored for eah baseposition.When performing a sequene omparison, both sequenes are �rst hashed.Next, idential hashes between the two sequenes are loated. The base regions ofthe two sequenes orresponding to the mathing hash are a potential seed for alonger math, hopefully meeting the N out of M similarity riteria set by the user.At this point, a more exhaustive searh is performed, taking into aount errors. Ifthe similarity riteria is not met in this omparison, the proedure moves onto thenext hash in ommon between the two sequenes and examines it. This proedureontinues until a math is found or all idential hashes have been examined anddisarded.



304.2.2 Global Hash TableThe GHT uses hashes to optimize the program at a higher level by �lteringthe entire searh spae into a subset of high-potential andidate primaries. The tableontains an entry for eah possible hash value. At eah entry, there is a list of lustersthat ontain at least one ourrene of the entry's assoiated hash. When a sequeneis lustered, it is hashed in the same way as desribed earlier. However, instead ofomparing it is hashes against every primary, the GHT is traversed. Only primariesthat are found by inspeting the GHT are examined. Primaries not having any hashesin ommon with the sequene being lustered are not examined.A further re�nement of the GHT onept is to keep a touh ount for eahprimary in the table. Eah time the primary is "touhed", meaning it has a hash inommon with the sequene being lustered, this ounter is inremented. A omparisonis only performed if the touh ount is inremented to beome greater than a thresholdthat is set by the user at run-time. If the threshold is hosen too high, then someprimaries meeting the user'sN out ofM similarity riteria may be missed. Similarly, ifthe touh ount is hosen too low, more omparisons than neessary will be performedand performane may derease dramatially.4.2.3 Parallel ExeutionThe latest version of the lustering program has been parallelized to splitup the omputational and memory requirements aross several omputers (omputenodes). The main reason for doing this is so the program an sale to larger problem



31sizes without being onstrained by the memory limitations of a single omputer. Theinreased performane is an added bene�t.In this mode of exeution, eah luster is stored on exatly one ompute node.A given sequene is read in from the input �le and proessed in parallel on eahompute node. This results in a parallel searh of the luster spae. One eah nodehas �nished its searh, eah node's best math is olletively ommuniated to allompute nodes. The node with the best math stores the sequene in its memoryspae. If no math is found on any of the ompute nodes, the input sequene beomesa new luster and is assigned to one of the ompute nodes. Clusters are balanedevenly aross the ompute nodes.If the extended searh option is enabled, an additional ommuniation is per-formed to build a list of all mathes meeting the user's similarity riteria. This listis gathered to the master ompute node (the node writing the output �les) and iswritten to a �le.



32
CHAPTER 5IMPLEMENTATIONThis hapter presents implementation details of the three generations of thelustering appliations that have been developed to date. The �rst version of theprogram, TLluster 1.0 was implemented by Professor Thomas Casavant in the Fallof 1998. This version was revised and expanded to produe the two subsequent majorreleases of the appliation, UIluster 2.0 and UIluster 3.0. In this hapter,UIluster will be used to olletively refer to all three of the implementations.5.1 Common Implementation DetailsCommon harateristis of all versions of UIluster inlude the high-levelsolution struture, the hashing algorithm, and the the sequene omparison fun-tions. These topis will be disussed in this setion and further elaborated on in thesubsequent setions that spei�ally deal with eah implementation version.An additional implementation ommonality is that eah version has been writ-ten in the C programming language [18℄ and is intended to be run using a UNIX-based [32℄ [30℄ operating system. Appendix A lists the omplete soure ode of thelatest release (roughly 5; 500 lines). Portions of this ode will be referred to throughoutthis hapter. The UNIX-derived Linux operating system has been used for develop-ment and testing of eah version. However, an e�ort has been made to make the



33appliations as UNIX platform independent as possible.5.1.1 High Level Solution StrutureThe basi ow of data is the same for all versions of UIluster and is shownin �gure 5.1. Two data soures are input into the appliation. The �rst is a �le (or�les) ontaining lusters formed by previous runs of the program. These lusters areonly input when performing an inremental lustering. The seond data soure is a�le ontaining the sequenes to be lustered. This �le is formatted in the ommonlyused multiple FastA �le format [12℄. Figure 2.6 is an example of a FastA formattedsequene. The �rst line of a FastA sequene always begins with a \greater than" signand is followed by the sequene name and other information. The sequene is listedafter this line, and inludes all lines up until the next FastA sequene reord.
Existing

Clusters

New

Sequences

UIcluster

New

Clusters
Augmented

Existing Clusters

Rejected

Sequences

Other Outputs

(Orphans, Hits, etc.)Figure 5.1: High Level Data Flow



34When performing an inremental lustering, the lusters that are input intothe program are proessed and loaded into memory before any new sequenes arelustered. New sequenes are ompared against these lusters in addition to anynew lusters that are formed by the new sequenes themselves. If a sequene beinglustered is found to belong to one of the previously existing lusters, it beomes amember of that luster.One the program has �nished running, the lusters that have been identi�edare output to �le. One �le is output that ontains all of the new lusters that wereformed from lustering the input sequenes. The sequenes in this �le were not ableto be added to the previously existing lusters that were input into the appliation.If there were �les input to the program that ontained lusters to be used for inre-mental lustering, a new �le is output for eah of the �les ontaining the modi�edlusters (i.e., possibly having sequenes from the input set added to them). Thisbehavior is very useful for traking the growth of existing lusters of interest. Ad-ditionally, input sequenes not meeting the user's minimum sequene length riteria(i.e., rejeted sequenes) are output to the rejet �le. Multiple other �les are alsooutput depending on whih options the user has hosen to enable (e.g., a �le listingall of the primaries mathed, or \hit", for eah input sequene when the extendedsearh option is enabled).In addition to the data-ow, the same basi ow of exeution is used for eahimplementation. This ow is shown in �gure 5.2. Step 4 enompasses the bulk



35of the program's exeution. Sequenes are read one at a time from the input �leand lustered. If a sequene is determined to be too short based on a user-de�nedparameter (spei�ed as the shortest number of onseutive valid bases allowable), itis rejeted and not lustered. Rejeted sequenes are output to the rejet file forlater inspetion.
1) Parse command-line
2) Allocate memory and initialize data structures
3) Read existing clusters into memory when performing an

incremental clustering
4) While there are unprocessed sequences in the input file

4a) Read a sequence from the input file
4b) Determine if the sequence is a reject
4c) If the sequence is not a reject, cluster the sequence

5) Write the clusters to the output file(s)Figure 5.2: Basi Flow of Exeution
If a sequene is not rejeted, it is lustered in step 4. This proedure isshown in more detail in �gure 5.3. First, the sequene is "hashed", as desribedin setion 5.1.3. These hashes are then used to searh for andidate lusters thathave high probability of mathing the input sequene, based on the similarity riteriabeing used. Eah andidate luster's primary is ompared to the input sequene todetermine whether or not the similarity riteria is met. This riteria is spei�ed bythe user at run-time as N of M bases, meaning that at least one M length windowontaining no more than M � N errors must exist between two sequenes for themto be onsidered similar.The two funtions that are used for this omparison are desribed in the follow-
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1) Hash the input sequence
2) Identify candidate primaries by searching for hash hits

2a) When a candidate is identified, call ScoreMatch()
2b) If score < threshold

i)   Move on to next candidate primary
Else

i)   Call ExtendMatch()
ii)  Add the input sequence to the candidate cluster
iii) Terminate the search and move on to next

input sequence
3) If the input sequence is not added to any cluster, it becomes the

primary of a new clusterFigure 5.3: Expanded Clustering Control Flow (line 4 from �gure 5.2)ing setion. By default, the searh of the andidate lusters is greedy. The sequenebeing lustered is added to the �rst luster that is found to be similar. The extendedsearh feature, �rst implemented in UIluster 2.0 an be enabled to searh theentire spae of andidate lusters for eah sequene that is input. In this mode ofoperation, an additional �le is output that ontains a list of mathing lusters foreah sequene. However, the sequene is only added to the luster that it mathesbest (i.e., the longest mathing subsequene measured in units of bases).5.1.2 Comparing SequenesComparing sequenes is the fundamental operation used by UIluster to lus-ter sequenes. Before the proess used for omparing sequenes is desribed, it isimportant to note that DNA is largely repetitive in nature. Before lustering is per-formed, it is important to mask out repetitive regions so that false similarities are notidenti�ed. Sequene similarity should only be based on base regions that are uniqueto a partiular sequene. Another related aspet of DNA that needs to be onsid-



37ered is low-omplexity regions suh poly-A tails and simple repeats. These regionsontain little information and should also not be onsidered as evidene of similaritywhen omparing sequenes. The input to UIluster should always be masked forlow-omplexity and repetitive regions using a program suh as RepeatMasker [28℄. Ifsuh preproessing is not performed, overlustering (i.e. merging lusters that shouldbe disjoint) will our.Our sequene omparison proedure is implemented as a two-phased operation.First, the SoreMath funtion is alled to evaluate if the similarity riteria spei�edby the user has been met. If it is determined that there is a math, ExtendMathis alled to extend the minimal subsequene math that was found by SoreMathto its longest extent while retaining the user's riteria for the maximum number ofallowable errors. Calls to SoreMath, while muh less omplex than a sore-basedsequene omparison suh as the Smith-Waterman algorithm [29℄, will still beomethe omputation's bottlenek if it is alled too often. Avoiding unneessary alls tothis sequene omparison funtion is the goal of our hashing optimization disussed insetion 5.1.3. The next two subsetions will disuss the SoreMath and ExtendMathfuntions spei�ally. The soure ode implementing these funtions is loated inappendix setion A.2.3.5.1.2.1 SoreMathThe SoreMath funtion determines if two sequenes share a window of Nout of M bases in ommon. Three error modes need to be taken into aount when



38doing the omparison: insertions, deletions, and mismathes. The funtion reursivelydesends an alignment until either a region of N out of M bases is found or morethan M �N errors are found in every possible edit path.Figure 5.4 shows an example of omparing two sequenes with SoreMath.For this example, the math riteria is N = 6 and M = 7 (Note: the tree is nottrunated where the M � N error limit has been exeeded so that all ases an beshown and disussed). When an error is enountered there are three ases that mustbe heked. The left branh orresponds to a mismath error, the middle branh or-responds to a deleted base in the �rst sequene (or inserted base in seond sequene),and the right branh orresponds to an inserted base in the �rst sequene (or deletedbase in the seond sequene). In this example, the �rst three bases math exatly.When the �rst di�erene is enountered at position four, SoreMath �rst heks fora mismath error along the left branh. To do this, it alls itself advaning to thenext position in eah sequene. The �fth positions are found to math, but the sixthpositions are di�erent. Again, SoreMath alls itself �rst heking for a mismatherror. Another mismath error is found and this branh stops beause the end of bothsequenes is reahed. The reursion falls bak one level and heks for a deletion inthe �rst sequene. This fails and the end of the seond sequene is reahed. Finally,the right branh is taken to hek for an insertion in the �rst sequene. This sueeds,but the end of the �rst sequene is reahed before a sore of 6 is found. The reursionthen falls bak to the fourth position and heks for a deletion in the �rst sequene.



39This orresponds to the middle tree in the �gure. Again, no mathes with a sore ofat least 6 are found. The reursion again falls bak to the fourth position and heksfor an insertion in the �rst sequene, taking the right-most branh. This searh issuessful, �nding a math of 6=7, so SoreMath returns to the alling funtion withthe sore { 6. If no aeptable math had been found, SoreMath returns the soreof the best path heked. Had a math of sore 6 been found earlier (e.g. in the leftbranh of base position 4) the funtion would have returned immediately.
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4/7 4/7 6/7Figure 5.4: Example of SoreMath Exeution
SoreMath is potentially very ostly in terms of exeution time, but is made



40at least marginally eÆient beause the number of errors is bounded, allowing wholesub-trees in the searh spae to be eliminated. The key assumption is that the numberof errors permitted will be relatively small (e.g. 95% identity for a given region). Iftoo many errors are permitted, the searh tree fans out rapidly in both the depth andwidth dimensions and performane su�ers dramatially.5.1.2.2 ExtendMathOne a math has been found by SoreMath, the ExtendMath funtion isalled to lengthen it. The approah taken is to append regions of M bases until theend of one of the sequenes is reahed or until a region shorter than M is an beappended. The regions are appended by repeatedly alling SoreMath. For eahappended region, the users N out of M similarity riteria must hold. The extensionstops one this riteria fails to be met for an appended region.5.1.3 HashingAll implementations of UIluster use hashing tehniques of various omplex-ities to �lter the searh spae and aelerate sequene omparisons. A hash is simplyan integer that uniquely represents a short string of haraters. In the ase of DNA,the possible haraters are from the alphabet fA;C;G; Tg, whih represent the fourbases. Any sized alphabet an be used, although the maximum string length used togenerate a hash may be severely limited for larger alphabets for pratial purposes.The general equation used to generate a hash is given by equation 5.1.
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H = ��1Xi=0 (Ki � �) (5.1)In this equation H is the generated hash value, � is the string length, K isthe alphabet size, and � is the integer value assigned to the letter at position i in thestring being hashed. To generate hashes for DNA sequenes, the alphabet size K isfour sine there are four DNA bases. Equation 5.2 gives the values assigned to eahbase. As a pratial matter, the string length � that an be used to generate hashesis limited by K, and the word size of the omputer. For the DNA alphabet, eah baserequires 2-bits to represent it (dlog2Ke where K = 4). Thus, the maximum value of� using a single word on a 32-bit mahine is 16.

� =
8>>>>>>>>>><>>>>>>>>>>:

0 if seq[i℄ = A1 if seq[i℄ = C2 if seq[i℄ = G3 if seq[i℄ = T (5.2)
When a sequene is hashed, equation 5.1 is used on every � length substring.Figure 5.5 shows the �rst six hashes generated for a sample sequene. Eah of thesehashes is indexed by the left-most harater in the substring being hashed. There areno hashes generated for the last � � 1 bases in a sequene. Additionally, substringswith X's or N's in them annot be hashed. This means that for every X or N, thereare at least � substrings that annot be hashed. Reall, X denotes a masked baseposition (due to repetitive or low omplexity sequene regions) and N denotes an



42ambiguous base position (due to unertainty during sequening).
Sequence:      TTGGCGTTTTG
Hashes:

Hash 1:  CCACTTG
Hash 2:  CACTTGG
Hash 3:  ACTTGGC
Hash 4:  CTTGGCG
Hash 5:  TTGGCGT
...etc.

= 48406
= 44869
= 27601
= 39668
= 59069

G  A

G

A

C

C

C

C

C

CFigure 5.5: Example of Hashing a Sequene
The alulation to generate the hashes for a sequene only needs to be per-formed one, but the hashes are aessed many times during the programs exeution.This amortizes the omputational overhead of generating the hashes. The atual Code that hashes a sequene is listed in setion A.2.2 in funtion hashSeq.5.2 TLluster (Version 1)The �rst implementation of the lustering program was TLluster. The mainfeatures of this program were inremental lustering, repiking of primaries, and a-eleration of sequene omparisons with per-primary sorted hash lists. The datastrutures used to represent a luster are shown in �gure 5.6. A luster is omprisedof one primary struture and zero or more seondary strutures. The seondary el-ements are stored in a linked-list attahed to the nextS p pointer of the primary



43struture. If the luster is a singleton (i.e. ontains no seondaries), this pointer hasthe value of NULL. The seondaries are hained together using the nextS p pointer ofthe seondary struture. The last seondary in the linked list has this pointer set tothe value NULL.
typedef struct PRIMARY {

char             *seqName;
char             *sequence;
int              *hashPrefix;
int              *hashPrefixIndex;
struct PRIMARY   *nextP_p;
secondary_t      *nextS_p;

} primary_t;

typedef struct SECONDARY {
char             *seqName;
char             *sequence;
double           score;
int              iP;
int              iC;
int              matchLength;
struct SECONDARY *nextS_p;

} secondary_t;Figure 5.6: Primary and Seondary Data Strutures
The lusters are stored in memory as a linked-list of primaries. The nextP ppointer of the primary struture performs the linkage. When lustering a new se-quene, TLluster starts at the beginning of this list and inspets every primary inorder. The new sequene is added as a seondary to the �rst primary that it mathes.If the repik primary option is enabled and the new sequene is longer than the lus-ter's existing primary, it beomes the new primary for the luster. The luster's oldprimary then beomes a seondary member of the luster.



44When inspeting a primary, the hashes stored in the sorted hashPrefix arrayof the primary data struture are used to determine if the sequene being lusteredhas any potential of being similar to the primary sequene. The hashes of the se-quene being lustered are ompared against the hashes of the primary sequene, andidential hash values are identi�ed. When a mathing hash is found, the indies ofthe orresponding hashes (i.e., the base index of the hash in the primary and the baseindex of the hash in the sequene being lustered) is passed to the SoreMath fun-tion. If this funtion determines that there is at least an N ofM base math betweenthe sequenes, the ExtendMath funtion is alled and the sequene is added to theprimary's list of seondaries (or is repiked as the new primary). The statistis ofthe math identi�ed by the sequene omparison funtions is stored in the seondarystruture in the sore, iP, iC, mathLen �elds. These orrespond to the identitysore of the math (e.g., a math of 95=100 bases orresponds to 95% identity), thestart base index of the math in the primary, the start base index of the math in theseondary, and the length of the math.The hashes of a primary sequene are stored in the hashPrefix array in nu-merially asending order. The hashes of the sequene being lustered are also storedin asending order. Thus, to searh for idential hashes between two sequenes, thesearrays only need to be linearly sanned one. Eah array has an index ounter as-soiated with it that starts at 0 and is inremented until the last hash is inspeted.When searhing for idential hashes, if the hash at the urrent index of the primary's



45hash array is less than the hash at the urrent index of the new sequene's hash array,then the primary's index ounter is advaned. Alternatively, if hash at the urrentindex of the primary's hash array is greater than the hash at the urrent index ofthe new sequene's hash array, then the new sequene's index ounter is advaned. Ifthe hashes being examined are idential for both the primary and the sequene beingexamined, then SoreMath is alled. The original implementation of TLluster didnot store the hashes in sorted order. The entire primary array was inspeted for eahhash of the sequene being lustered. The last version of TLluster had an order ofmagnitude in performane as a result of this sorting.The length of the hash probe used is an important parameter that an signif-iantly a�et performane. Longer hash lengths will result in better performane fora given similarity riteria. It must also be hosen arefully so that potential similar-ities are not missed. The formula for alulating the optimal hash size is shown inequation 5.3. The rational for this equation is that for any hosen similarity riteriawhere M is the window size and M � N is the number of permitted errors, thereis at least one ontiguous, error-free region of � bases. Thus, the omparison of twosequenes an be aelerated by �rst searhing for short exat mathes of length �bases between the pair (i.e. searhing for idential hashes). If suh a math is found,a more exhaustive searh that permits errors an be performed. If no length � hashesare identi�ed, then the two sequenes annot possibly ontain a window of M baseswith N bases in ommon.



46
� = j MM �N + 1k (5.3)5.3 UIluster 2.0TLluster was found to work well for moderately sized data sets (30; 000 orfewer ESTs), however as the Rat EST gene disovery data sets grew, more perfor-mane was required. To aomplish this, a table was implemented in the next versionof our lustering program, renamed UIluster 2.0, that stores the set of lusterprimaries ontaining any given hash value. Although this table, referred to as theGlobal Hash Table, inreases memory requirements signi�antly (4� lists of varyinglengths proportional to the number of primaries) , it eliminates the need to sequen-tially traverse the list of primaries for eah sequene lustered. Only primaries thatontain hashes in ommon with the sequene being lustered are examined as andi-dates. Thus, performane is inreased signi�antly. In addition to this optimization,two features were added that enable more thorough lustering { heking the reverseomplement of a sequene, and performing an extended searh of all primaries for eahsequene being lustered. Both of these are options and an be enabled independentlyby the user. 5.3.1 Global Hash TableA strutural view of the global hash table (GHT) is shown in �gure 5.7. Ingeneral, this table ontains 4� top level entries, eah entry being a memory pointerto a linked list of luster primaries. Only primaries disovered by indexing into this



47table and traversing the orresponding linked list are onsidered as andidates.
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Figure 5.7: Global Hash Table
In the �gure, there are 48 entries orresponding to a hash window size of � = 8.On a 32-bit mahine, this equates to an empty table size of 256 kilobytes (48 entriesof 4 bytes eah). In order to keep aesses to this table fast, this table is diretlyaessed by hash value. This is an important point sine this table is aessed sofrequently. Any sort of traditional hash table implementation would require extraalulations and have the potential for hash ollisions. The drawbak is memoryusage of the table sales by 4� for DNA sequenes (alphabet size = 4). The memoryrequired for the table when � = 16 is 16 gigabytes. Thus, some ompromises needto be made when hoosing the value of � to use. The shorter value hosen will bereferred to as � 0. Some empirial experimentation is neessary to determine what � 0



48is most e�etive for a given data set and for the available memory.Sine it is typially not possible to use the optimal hash size for a given N outof M similarity riteria, a thresholding sheme was developed to lessen the trade-o�in seletivity of andidates. For eah sequene lustered, the GHT is traversed toidentify andidate primaries that ontain at least � length � 0 hashes in ommon withthe sequene. Instead of looking for only one � length hash in ommon as was thease in TLluster, multiple shorter hashes are searhed for. Equation 5.4 an beused as a guide when hoosing the value of � to use for the optimal � and hosen � 0.The value of � 0 to use is a parameter de�ned by the user at run-time for exibility inmemory usage and performane.� = (M �N + 1) � (� � � 0) (5.4)An integer ounter was added to the primary data struture to ount thenumber of times a given primary is enountered, or touhed while traversing theGHT for a given sequene. Only if a primary is touhed more than � times is aomparison performed against the sequene being lustered. This ounter is reset tozero after every sequene proessed.Intuitively, the thresholding sheme lowers the probability that SoreMathwill be alled for a primary that doesn't math the sequene being lustered. Similarly,the GHT learly has the potential to eliminate many of the failed alls to SoreMathin TLluster. In pratie, the GHT optimization has been highly e�etive { usually



49improving performane by fator of at least 30 over TLluster.5.3.2 Extended SearhDue to the use of TLluster in our sequene proessing pipelines, it was de-termined that there are ertain situations where heking all of the primaries for eahsequene lustered is desirable. Diretly modifying TLluster to do this would havebeen relatively straight-forward, however performane would have degraded signi�-antly. Instead of stopping on average half way through the traversal of the primarylinked list for sequenes that beome seondaries, the remainder of the list would needto be traversed.This property was aomplished in pratie by the use of the GHT. Performaneis only moderately inreased beause the searh spae is �ltered into a relatively shortlist of andidate primaries for eah sequene lustered.5.3.3 Reverse Complement ChekingA ommon error in sequening DNA auses the wrong strand to be sequenedin the opposite diretion. To detet this, a feature was added to hek the reverseomplement of a sequene being lustered in addition to heking it in its originalform. If the extended searh option is enabled, the reverse omplement of a sequeneis always heked for similarity to the luster primaries. Otherwise, it is only hekedfor sequenes where no similarity was found in the sequene's original orientation.To generate the reverse ompliment, the harater string representing the se-quene being lustered is opied into a working bu�er. This bu�er is then reversed



50in-plae by suessively swapping bases. After reversal, the sequene string is om-plemented aording to DNA pairing rules (i.e fA! Tg; fT ! Ag; fG! Cg; fC !Gg). The C ode that implements these steps is found in the funtion revComp listedin appendix setion A.2.9. The resulting sequene string is then hashed and proessedin exatly the same way as the original sequene.5.3.4 Additional Minor ChangesTwo additional hanges are worth mentioning. The Linux operating system, orrather the library that implements the mallo funtion [30℄, has limits on the numberof memory bloks that an be alloated. This aused UIluster to rash for largedata sets without explanation. Considerable time was spent debugging the programin order to identify the ause of the rash. One the mallo limitation was disovered,ustom memory alloation routines were implemented as a solution. These funtionsare listed in appendix setion A.2.6. The vast majority of the alls to mallo wereidenti�ed to be of a limited number of sizes. Indeed, this is beause entries in theGHT are all of the same size and are alloated separately. Other data strutures inthe appliation have this property as well. The memory alloation funtions operateby alloating a large hunk of memory that is a multiple of the size in bytes of agiven data struture. This, along with some bookkeeping, enables many struturesto be alloated with a single all to mallo. This solved the rashing problem andwas instrutive as to the issues that arise when working with large data sets.The seond hange was a result of problems enountered when lustering long



51sequenes. TLluster was implemented to use a rude \bubble sort" algorithm forsorting hash arrays. While this was suÆient for the average EST sequene length(400-800bp), this beame a bottlenek for longer sequenes suh as full-length DNAsand genomi ontigs. The quiksort algorithm was implemented to work around thisproblem. The algorithm used was adapted from [22℄ to also arry along the hashindex array. The soure ode for this routine is listed in appendix setion A.2.8.5.4 UIluster 3.0The latest version of UIluster improves on its predeessor by adding parallelexeution apability and the notion of virtual primaries. These features are disussedin the following setions. 5.4.1 Parallel ExeutionThe parallel exeution funtionality is implemented using the MPICH MPI li-brary [19℄. The number of UNIX proesses to use is a parameter spei�ed by the userat run-time. If one proess is hosen, the program operates identially to UIluster2.0 if the virtual primary generation option is not enabled (disussed in the nextsetion). If more than one proess is hosen, the program's exeution and memoryrequirements are spread aross multiple UNIX proesses and proessors. If the om-puting hardware being used is an SMP mahine, eah of these proesses an use aseparate CPU. Alternatively, if the program is operating in a lustered environment,suh as a Beowulf lass system [4℄, the proesses are spread aross multiple distributedomputers.



52The only hange to the lustering algorithm is a series of olletive ommunia-tions between proesses after the GHT has been searhed and the mathing primariesidenti�ed. The list of mathing primaries for eah node is sorted by sore and the bestmath is ommuniated to all other nodes. If no math is found, then the sequenebeing lustered beomes the primary of a new luster and is assigned to a single pro-ess, determined by the proess ID equal to the modulus of the luster ID and thenumber of proesses. In this way, the lusters are evenly spread aross proesses andthe memory requirements are redued aordingly (assuming eah proess also getsassigned approximately the same number of seondaries).If a similarity to a luster is determined, the proess with the best sore isdetermined and the sequene is added to the best mathed luster on that proess.5.4.2 Virtual PrimariesThe virtual primary generation feature of the latest version has been imple-mented using the bl2seq [31℄ program to identify the extent of the overlap betweenthe urrent virtual primary of a luster and the sequene being added to the lus-ter. bl2seq uses the BLAST [3℄ algorithm to align two sequenes and assign a soreto eah of the mathing regions identi�ed. It is, however, onsiderably slower thanthe sequene omparison funtions in UIluster. The reason for using it insteadof the SoreMath and ExtendMath funtions is two-fold. First, it is more au-rate in determining the length of a math. It reports the end base of a math forboth sequenes being ompared, instead of a single math length parameter as does



53SoreMath. This is important when aligning a new sequene to a virtual primaryto see if it an be extended. ExtendMath, beause it uses a heuristi for speed(repeatedly alling SoreMath), and sometimes misses some bases at the end of amath. The seond reason for using bl2seq is to identify ases where there are mul-tiple mathing regions. SoreMath and ExtendMath only identify one math. Thisis useful for identifying sequenes possibly representing alternative splie forms of agene. Future versions of UIluster may implement the neessary funtionality ofbl2seq internally. It was used for the purpose of speeding development of the virtualprimary generation feature.When a sequene is added to a luster, the bl2seq funtion is alled to omparethe new sequene to the luster's virtual primary. The soure ode to all bl2seqand parse the results is listed in appendix setion A.2.10. A list of mathes sortedby sore is returned to the aller. Eah math in the list ontains the start base inthe virtual primary, the start base in the new sequene, the end base in the virtualprimary, the end base in the new sequene, the sore of the math (math lengthin the virtual primary), and the diretion of the math. This information is thenused by the addSeondary funtion (listed in appendix setion A.2.2) to determineif the virtual primary an be extended by the new sequene. Five ases are deteted:bases an be added to the front of the virtual primary, bases an be added at theend of the virtual primary, bases an be added at both the front and end of thevirtual primary, the new sequene is entirely ontained in the virtual primary, and



54the new sequene partially hits the virtual primary but ontains signi�ant regionsthat are inonsistent with it. If an extension is possible, the added bases from thenew sequene are opied into the virtual primary bu�er. If bases are added to thebeginning, the existing virtual primary is shifted to the right in the bu�er. Theresulting sequene is then hashed and added to the GHT. The hashes of the previousvirtual primary are removed before this is done.When the virtual primary bu�er is �rst reated, twie as muh memory thanneessary is alloated. When an extension would ause this bu�er to be exeeded, thebu�er is doubled again with a all to the reallo funtion [30℄. By alloating morespae than neessary, the number of reallo alls is redued, thus reduing memoryfragmentation.The latest release of UIluster is the �rst version that inorporates the virtualprimary generation feature. Over time, the usefulness of this feature will be evaluatedmore extensively than has been done to date. If it is determined to be useful, itsperformane will be improved in future versions of the lustering appliation.5.5 Running UIluster 3.0This setion is intended to be instrutive in ompiling and using the latestversion of UIluster. The appliation is available in soure ode form from ourprojet web site (http://genome.uiowa.edu). The previous releases of the applia-tion, TLluster 1.0 and UIluster 2.0, and aompanying doumentation are alsoavailable from this site. The proedures for running UIluster 2.0 are essentially



55idential to what is presented in this setion with the exeption of the virtual primaryand parallel exeution features. 5.5.1 CompilingOne the soure ode to the program has been downloaded from the Internet,it needs to be ompiled into an exeutable program before it an be used. To dothis, the soure distribution must be unompressed, on�gured, and ompiled witha C ompiler. The user performs all of these steps entering ommands at a UNIXommand-line.An MPI library must be installed on the UNIX omputer being used beforeUIluster 3.0 an be ompiled. The program was developed using the freely avail-able MPICH MPI library. This library is available for the UNIX platforms (Linux,Sun, HP) UIluster supports. Instrutions for obtaining and ompiling MPICH areavailable on the Internet (http://www-unix.ms.anl.gov/mpi/mpih). Other MPIimplementations should work, however they have not been thoroughly tested. Theompilation of UIluster 2.0 does not require an MPI library. If the user doesnot need the parallel exeution and virtual primary generation features of UIluster3.0, then version 2.0 should be used. Other than this requirement, the proedure forompiling the two versions is the same.The UNIX ommands neessary to build the UIluster exeutable are givenin �gure 5.8. The �rst step is to deompress and un-arhive the distribution byexeuting the �rst two ommands in the �gure at a UNIX shell prompt. The next



56step is move into the main soure diretory by using the third ommand. The fourthstep on�gures the �les neessary to build the appliation. Finally, typing \make"builds the exeutable. After a suessful build, the exeutable will be a �le alleduiluster. It may be opied to a loation in the user's path so it an be exeutedfrom anywhere on the system.
1) gzip -d UIcluster-3.0.tar.gz
2) tar -xvf UIcluster-3.0.tar
3) cd UIcluster-3.0
4) ./configure
5) makeFigure 5.8: UNIX Commands for Compiling UIluster
5.5.2 Command Line Options and UsageFigure 5.9 shows the ommand line options input into the program. Themeaning of most of these has already been disussed in this hapter, however thenames may be slightly di�erent and/or abbreviated. With the exeption of the inputsequene �le, all parameters are optional for the user to speify. The default value foreah option is shown in the right olumn of the �gure. Both short and long optionnames are available for eah parameter, shown in the left olumn of the �gure.The --preClus option takes as its argument a �le ontaining a list of �les,one per line, of previous lustering results to use for inremental lustering. The--rejetCrit is spei�ed as the minimum number of bases required to luster an in-
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UIcluster 3.0.4 Usage:   uicluster [options] input_fasta_file

Valid Options: (defaults are in parenthesis)
-F, --preClus     specifies the preClustered infile    (none)
-R, --rejCrit     specifies the rejection criteria  (100 bases)
-H, --hashSize    specifies the hash size           (  8 bases)
-S, --startSkip   specifies the start skip          ( 18 bases)
-s, --endSkip     specifies the end skip            (  0 bases)
-M, --matchLen    specifies the length to match     ( 40 bases)
-E, --errLimit    specifies the error limit         (  2 bases)
-C, --maskChar    specifies the mask character         ('X')
-h, --hitThresh   specifies the hit threshold           (16)
-P, --wrongPen    specifies the wrong penalty            (1)
-p, --gapPen      specifies the gap penalty              (1)
--repick          repick cluster primaries             (off)
--tryRevC         check reverse compliment             (off)
--keepGoing       perform exhaustive search            (off)
--vPrimary        generate virtual primary             (off)
--help            view this messageFigure 5.9: UIluster 3.0 Command-line Interfaeput sequene. The --hashSize spei�es the value of � 0 to use. --startSkip spei�esthe number of bases to disregard at the beginning of a sequene. This is useful whenthere is a poly-T tail still present in 3' EST data. The --endSkip similarly spei�esthe number of bases to skip at the end of a sequene. The --mathLen spei�esmath window, M , to use and --errorLimit spei�es the number of errors to allow,M � N . The --maskChar parameter designates the harater that will be used toidentify low-omplexity and ambiguous regions. The --wrongPen and --gapPen des-ignate penalties to use for gaps (i.e. inserted and deleted bases) and mismathed basesin the SoreMath funtion. The --repik ag enables the repiking of primariesas disussed in setion 5.2. The --tryRevC ag enables reverse omplement hekingof input sequenes as disussed in setion 5.3.3. The --keepGoing ag enables theextended searh apabilities disussed in setion 5.3.2. Finally, the --vPrimary op-tion turns on the virtual primary generation feature for eah luster as disussed in



58setion 5.4.2.If parallel exeution of the program is desired, the mpirun program must beused to launh the exeutable on multiple ompute nodes simultaneously. The\-np X" (where X is a number) argument of this program is used to designate howmany ompute nodes to use. For example, to run UIluster 3.0 on 8 ompute nodeswith the default options and an input sequene �le named seqs.fasta the ommand is\mpirun -np 8 uiluster seqs.fasta". To exeute the program serially the ommandwould have been simply \uiluster seqs.fasta". In addition to using mpirun for parallelexeution, all of the input �les need to be available on eah of the ompute nodes(e.g. ross-mounted using the network �le system (NFS) protool).5.5.3 Output File FormatThe luster �les output by all version of the lustering appliation are format-ted in essentially the same way. The new lusters are output in a �le named the sameas the input sequene �le with an \.lus" extension (e.g. the luster �le output for aninput �le named input.fasta is input.fasta.lus). In the inremental lustering mode,a �le with an \.out" extension is output eah luster �le input into the program.Eah luster �le ontains one or more lusters, eah luster being omprisedof one or more sequenes. For eah luster, the luster primary is given �rst andis signi�ed by a line starting with \�P:" followed diretly by the sequene's name.The sequene string starts on the next line. The sequene is printed as seventy basesper line. Any seondary sequenes belonging to the luster follow diretly after the



59primary, and are formatted in the same way exept that eah sequene de�nitionstarts with \�S:". If the virtual primary option is enabled, it is loated between theprimary and the �rst seondary sequene. Its sequene de�nition starts with \�VP:".In addition to the luster output �les, there are two aompanying �les output.The rejets �le (input sequene �le-name with the \.rej" extension appended) ontainssequenes that were rejeted from the lustering. The format of this �le is a numberedlist of sequenes and is fairly self-explanatory. The hits �le (input sequene �le-namewith the \.hits" extension appended) ontains the list of lusters that were found toontain a math meeting the users N out of M similarity riteria for eah sequene.In UIluster 3.0, eah line in this �le is formatted as a sequene name followed bya list of tuples of the form luster ID.math sore:diretion representing the mathedluster for that sequene. The diretion �eld is either \f" or \r", indiating forwardand reverse omplement mathes. A sample entry of this �le listing two mathedlusters (i.e., luster ids 4 and 98) is \UI-R-A0-ae-e-12-UI: 4.378:f 98.175:r".
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CHAPTER 6RESULTSThis hapter presents results obtained by utilizing the UIluster lusteringappliation disussed in this thesis. The �rst two setions of the hapter disuss twoimportant uses of the appliation { novelty assessment and gene index reation. Thethird setion of the hapter ompares the University of Iowa's rat gene index reatedby UIluster and NCBI's rat UniGene index. Finally, the last setion reports onthe measured performane and memory usage of the various versions of UIluster.6.1 EST Sequening Novelty AssessmentUIluster was originally developed for the purpose of assessing 3' EST se-quening novelty rates, roughly orresponding to the gene disovery rate. The pro-gram has been used in the prodution sequening pipelines of several projets under-way in our laboratories at the University of Iowa [11℄ and at other institutions(KAIST, Korea, Washington University, St. Louis, UNL, Linoln, MCW, Milwaukee,among others). Equation 6.1 states the equation used for alulating perent novelty.% Novelty = # lusters# sequenes � 100 (6.1)This equation is utilized to alulate inremental and overall novelty rates



61for individual libraries and for projets as a whole. Inremental novelty alulationsare performed daily to monitor the sequening e�orts and to determine when librarysubtrations and/or normalizations should our [5℄. Both of these proedures havebeen proven to dramatially inrease novelty rates. However, they are time onsumingand annot be performed on a ontinual basis.Figure 6.1 shows an example of the e�etiveness of these proedures for aprogression of four DNA libraries, named C0, C1, C2p, and C3. More details anbe found in [25℄.
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Figure 6.1: Inremental Library Novelty
C0, the �rst in the progression, was sequened to obtain roughly 7,000 ESTs.This is shown in �gure 6.1 as the left-most downward trend. To inrease the novelty



62rates, the C1 library was reated by removing previously seen DNA transripts fromthe C0 library. Sequening from this library is depited in the seond downwardtrend in the �gure (7,500{12,000). Again, over time the sequening from this librarybeame too low and the C2p library was reated from it. This is shown in the thirddownward trend in the �gure (12,000{17,000). Finally, the C3 library was reatedfrom C2p to improve novelty rates (17,000{21,000). For eah suessive library, theinremental novelty rates steadily derease sine the redundany removing proeduresare not perfet. It should also be noted that the large drop-o�s in novelty immediatelybefore eah library is a unique harateristi of this data set and will probably not beobserved for other library progressions.6.2 Generation of Gene IndiesA related task to novelty assessment is gene index reation. Ideally, runningUIluster on a set of sequenes will assess novelty and generate a gene index (orUniGene set as it is popularly referred to). Eah luster will represent a gene, andthe total number of lusters divided by the number of sequenes will represent thenovelty of the sequenes lustered. Suh indies are essential for piking DNA lonesto use in the radiation hybrid mapping e�orts under-way at our laboratory.The spei� proedures that are used to generate our UniGene indies areonstantly being re�ned. The similarity riteria that we have most reently beenusing is a mathing window of 38/40 (i.e. N = 38;M = 40) bases between twosequenes for them to be put into the same luster. Over time, the repiking of



63primaries and the reverse omplement heking features have been inorporated intoour UniGene build proedure. At the time of writing this thesis (April 9, 2001),our Rat Gene Disovery UniGene index ontains 62,296 lusters, 213,372 sequenes.Our Human Caner Genome Anatomy Projet UniGene index ontains 29,509 lusters(40,684 sequenes), and our Mouse Brain Moleular Anatomy Projet ontains 37,983lusters (88,844 sequenes). Current statistis on our UniGene indies an be obtainedfrom our projet web site (http://genome.uiowa.edu).Reently, the number of genes estimated to be in the human genome hasbeen redued from 100,000 to 30,000-40,000 [17℄. Most other higher-level mammalianorganisms are expeted to have similar numbers of genes. This is ausing us torevise our UniGene build proedure beause, for example, our 62,296 rat lusters(genes) seems to be muh too high (underlustered). We suspet low-quality ESTsand other sequening errors (alternative polyadenylation, internal restrition sites,and internal priming) to be the ause of this. As a �rst attempt at eliminatingsuh ontamination, we have formed a Rat UniGene set by only ounting lustersthat ontain one or more sequenes with both the tail and signal features present.These features are identi�ed in an EST sequene by the estPrep appliation that ourlaboratory has developed [11℄. When this riteria is applied, 23,902 lusters remain inour rat UniGene index. We are urrently evaluating the e�etiveness of this hange.However, the redued number of lusters seems to be more onsistent with the revisedgene estimates. An additional hange planned for the future is to utilize the draft



64human genomi sequene to verify lusters. This is possible beause most rat genes(> 98%) are also present in the human genome. If all sequenes in a luster math to aloalized region of the human genome (e.g., within the same 10,000 base region) thenthat luster is likely to represent the same gene. Clusters with sequenes mathingdistant regions of the genome should be looked at with suspiion.6.3 Auray AssessmentComparisons between our rat UniGene index and NCBI's UniGene index [27℄will be used to assess the auray of our sequene-similarity-based lustering. Ad-ditionally, the sequene assembly program phrap [13℄ will be used to assemble ourlusters into onsensus sequenes. Instanes where the sequenes in a luster assembleinto one onsensus (ontig) provides additional evidene that the sequenes representthe same gene. 6.3.1 Comparisons to NCBI UniGeneA set of Perl [35℄ sripts were developed to ompare our rat lustering resultsto NCBI's rat UniGene (ftp://ftp.nbi.nlm.nih.gov/repository/unigene). In order toobtain the most fair omparison, the 128,229 University of Iowa ESTs ontained inthis index were extrated and put into a FastA formatted �le. This number is reduedfrom the 213,372 sequenes stated earlier beause NCBI requires the tail feature tobe present in an EST for it to be used in their lustering. Other minor EST seletionriterias also di�er between our methods.The latest version of UIluster was used to luster this data set. The param-



65eters used were N = 38;M = 40; � = 8; � = 15 and the repik primary and reverseomplement heking options were enabled. Running UIluster resulted in 41,726lusters. Three types of luster relationships were then determined by the Perl sript{ lusters mathing between the UIluster lustering and NCBI's lustering andlusters that are split into one or more lusters between the two. These relationshipsare shown graphially in �gure 6.2. The ase where a UIluster luster is totallyontained in a single NCBI luster (e.g., in the �gure there is an extra sequene inthe NCBI luster for the mathing lusters ase) is onsidered to be mathing.

b) split cluster

a) matching clusters

UICluster
Clustering
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Figure 6.2: Comparing Clusters
The analysis of the 41,726 lusters generated by UIluster showed that 39,165lusters (93.9%) mathed an NCBI luster. The remaining 2,561 lusters (6.1%) were



66split into multiple NCBI lusters. Performing the omparison in the opposite diretionfor the 41,522 NCBI lusters ontaining University of Iowa ESTs resulted in 38,890(93.7%) NCBI lusters diretly mathing a UIluster luster. The remaining 2,632(6.3%) NCBI lusters were split among multiple lusters in the UIluster lustering.6.3.2 Analysis of Cluster AssembliesAnother set of Perl sripts were developed to generate luster onsensus se-quenes for eah of our lusters using the phrap [13℄ sequene assembly program.Ideally, eah luster should assemble into one ontig (i.e., a onsensus sequene thatevery sequene in the luster aligns to) sine all of the sequenes should represent thesame 3' UTR. In pratie, lusters ontaining sequenes from multiple transripts ofthe same gene will assemble into more than one ontig. Clusters ontaining sequenesthat shouldn't belong will also ause multiple ontigs to be produed.The sript's analysis of our re�ned 23,902 luster rat UniGene index (i.e., theindex disussed at the end of setion 6.2 that was generated by only using ESTswith the tail and signal features present) shows that of the 13,334 non-singletonlusters (i.e., lusters ontaining only one sequene), 8,362 (62%) assemble into oneonsensus sequene that represents all of the sequenes in the luster. These lustersare likely to represent true genes. The remaining 37% assemble into more than oneonsensus sequene. Automated methods for lassifying the auses of these asesare urrently being developed. However, hand examination is showing that the vastmajority appear to be instanes of multiple splie forms being present in the same



67luster. Other auses inlude alternative polyadenylation, internal not sites, himerisequenes, and internal priming. This analysis is somewhat enouraging onsideringthat it is estimated that between 30{40% of human genes ontain multiple splieforms. However, spliing variations are thought to usually not our in the 3' UTR.Thus, further inspetion by expert biologists is needed to gain more understandingof the multi-onsensus lusters.6.4 Performane AssessmentThe performane of the versions of UIluster presented in this thesis is dis-ussed in this setion. While it is impossible to examine the entire parameter spaeof the program, an e�ort has been made to present the most important performanemetris. All of the performane results obtained in this setion were obtained using aset of 16 dual 500MHz Pentium III omputers. Eah omputer (ompute node) on-tained either 1 gigabyte or 2 gigabytes of memory. Gigabit Ethernet (1000 megabitsper seond) was used for the ommuniation network.6.4.1 Exeution TimeFor serial exeution, the largest performane inrease was realized with theintrodution of the global hash table in UIluster 2.0. Figure 6.3 shows the per-formane di�erene between TLluster and UIluster 2.0 for lustering 80,766 ratEST sequenes with a similarity riteria of N = 38;M = 40. For this test, � = 8and � = 15 were used with UIluster 2.0. These are the parameters that ourprodution pipelines urrently employ. Other parameters will produe di�ering lev-



68els of performane gain, however results similar to those presented in this �gure aretypially observed. The serial performane of UIluster 2.0 and UIluster 3.0 isessentially the same.
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Figure 6.4 illustrates the parallel speedup obtained by UIluster 3.0. Sinethe implementation uses a olletive ommuniation at the end of every sequene, theamount of omputation required for eah sequene is important. As the grain sizeinreases, better performane should be observed sine relatively less ommuniationis being performed. The �rst urve (labeled 1) orresponds to the default parametersused in our pipeline. The seond urve (labeled 2) adds the extended searh option.The third urve (labeled 3) adds the reverse omplement heking.Performane atually dereases from the serial ase with two ompute nodesfor the �rst ase. This is probably due to the omputation not being distributed
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Figure 6.4: Parallel Speedupevenly and the added ost of the ommuniation. As the omputation is spread arossmore ompute nodes, performane inreases somewhat but is never more than doublethe performane of the serial ase. The single node exeution time of this ase isapproximately 12 minutes and the exeution time of the 16 node run is approximately7 minutes.Enabling the extended searh of primaries signi�antly inreases the realizedspeedup. The omputation sales well up to 8 nodes and then levels o�. For thisurve, the exeution time of the single node run was approximately 38 minutes andthe exeution time of the eight node run was approximately 8.5 minutes.The third urve sales approximately the same as the seond. The exeutiontime of this ase of the single node run is approximately 48 minutes and the exeutiontime of the eight node run is approximately 11 minutes.



706.4.2 Memory UsageThe introdution of the global hash table in UIluster 2.0 greatly inreasedthe memory requirements of the appliation. For a set of 82,624 ESTs, TLlusterrequired about 100 megabytes of memory. For the same data set, both versions ofUIluster required roughly 171 megabytes of memory.Figure 6.5 shows how memory usage sales for the same data set with UIluster3.0. The memory requirements sale fairly linearly for inreased numbers of omputenodes, whih suggests that the approah of distributing an equal number of lustersto eah ompute node works well.
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Figure 6.5: Parallel Memory Saling
Sine user programs are limited to addressing 2 gigabytes of memory withLinux, the maximum number of ESTs that an be lustered is limited to approxi-mately 1 million sequenes. For larger data sets, memory beomes an issue when



71exeuting serially. UIluster 3.0 has been used to suessfully luster a data set of1,956,525 mouse EST sequenes. Performing this lustering with 16 ompute nodesrequired approximately 300 megabytes per ompute node and 18 hours, 34 minutesof ompute time. 6.4.3 Parameter VariationFigure 6.6 shows how enabling various options e�ets the exeution time ofUIluster 2.0 (and thus UIluster 3.0 when exeuting with a single omputenode) for a data set of 82,624 ESTs. All of the ases in top half of the �gure wereused with the similarity riteria N = 38 and M = 40 and the parameters � = 8and � = 15. The \default" option means that UIluster was run without therepiking of primaries (i.e., \Repik"), reverse ompliment heking (i.e., \TryRev"),extended searhing (i.e., \Ext"), and virtual primaries generation (i.e., \vPrim")options enabled. The virtual primary generation option inreases exeution time themost. This is beause alling the external bl2seq program, used to implement theoption, involves onsiderable overhead. Various option ombinations are also inludedin the table. It should be noted that the exeution times of these option ombinationsare not simply the exeution times of the individual options added. This is beauseoptions an e�et one another (e.g., enabling the extended searh option and thereverse omplement heking option means that the reverse omplement is alwaysgenerated and heked for eah input sequene This inreases the overhead for eahinput sequene onsiderably).
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Parameters Time in Minutes

Default 11.2

Repick 15.21

TryRev 23.4

Extended 36.2

Virtual Primaries 79.1

TryRev + Ext 92.33

TryRev + Ext + Repick 118.2

TryRev + Ext + Repick + vPrim 149.75

z¢=6 l=21 > 24 hours

z¢=7 l=18 440.17

z¢=8 l=15 36.6

z¢=9 l=12 9.46

z¢=10 l=9 5.32

z¢=11 l=6 5.3

z¢=12 l=3 5.26

z=13 l=1 5.18Figure 6.6: E�ets of lustering options on exeution timeThe bottom half of the �gure gives the run-times of the program using di�erentvalues of � 0 and � with the same similarity riteria as before (N = 38, M = 40). Therun-time using the optimal value of � = 13 is also given (alulated by equation 5.3).For eah � 0, � is alulated by the formula given in setion 5.3.1 (equation 5.4). When� 0 = 6, the empty global hash table uses only 16 kilobytes of memory. However, per-formane is very poor beause too many false andidate primaries are identi�ed.When � = 13, the global hash table uses 256 megabytes of memory. However, ap-proximately the same performane an be obtained by using � 0 = 10 and � = 9. Thisis beause for � 0 = 10 or greater, the global hash table optimization is nearly 100%e�etive in �ltering the searh spae down to only true andidate primaries. Thus,the SoreMath funtion is alled the minimal number of times. For � 0 = 10, the



73empty global hash table uses a reasonable 4 megabytes of memory.
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CHAPTER 7CONCLUSION AND FUTURE WORKThis thesis has presented a software tool for geneti sequene lustering. Ithas the harateristis of high-performane, auray, and exibility. UIlusterhas proven its robustness and utility by its use in several large-sale gene disov-ery projets at the University of Iowa. Additionally, the exibility of UIlusterhas allowed it to be useful for many appliations beyond its initial intent of 3' ESTlustering.However, there is still room for improvement. The following setions providebrief overviews of some of the more signi�ant enhanements proposed for UIluster.7.1 Alternative Transript Identi�ationCurrently, sequenes that may be andidates for alternative spliing are markedfor later inspetion by a human operator. More advaned tehniques ould be inor-porated into UIluster that examine lusters and attempt to identify exon bound-aries and alternative transripts. When available, these tehniques ould make use ofgenomi sequene data to aurately order the exons that are identi�ed.



757.1.1 Without Genomi SequeneCurrently, the virtual primaries reated for a luster will only represent a singletransript. Sequenes added to a luster either are onsistent with the virtual primaryor they are agged as problem sequenes for later inspetion. Suh sequenes mayrepresent di�erent transripts of the same gene, possibly ontaining exons that are notpresent in the urrent virtual primary. For example, the omparison of a sequene toa virtual primary may ontain a mathing region, followed by a non-mathing region,followed by another mathing region. The non-mathing region possibly representsan exon not urrently in the virtual primary. This region ould be inserted into thevirtual primary and the boundaries ould be noted as exon boundaries. The resultingvirtual primary reated by this type of proedure will ontain all of the exons presentin a luster, but they may not be in the order that they our in the genomi sequene.7.1.2 With Genomi SequeneNow that the genomes of several organisms have been ompletely sequened,the is tremendous opportunity to use genomi sequene along with lustering. Thisinformation an be used to resolve ambiguous exon orderings and verify exon bound-aries. For example, the virtual primary of a luster may ontain four identi�ed exons,labeled A, B, C, and D. One transript in the luster may be splied as ABD. Anothertransript in the luster may be splied as ACD. Given these observations only, thevirtual primary ould be represented as ABCD or ACBD. Without genomi sequene,the order of exons B and C is ambiguous. The genomi sequene provides a means



76to resolve the order of these exons. One possible approah would be to take a lustervirtual primary and �nd the region of the genome that ontains it using a programsuh as BLAST [3℄. This region ould then be used to resolve any ambiguous exonorderings. 7.2 Con�rming Gene PreditionsThe exons identi�ed by UIluster in the virtual primaries an be usefulfor verifying the auray of gene predition programs suh as GenSan [7℄ andGRAIL [14℄. Gene predition programs are based on generalized models of genesand an often make mis-preditions. The empirial observation of an mRNA tran-sript veri�es that a predited gene atually exists and that a partiular transriptof that gene is truly expressed (i.e., it is a splie form that an be produed duringtransription). Additionally, the exon boundaries identi�ed in the virtual primaryverify that the predited exon boundaries are orret.7.3 Manual CurationA high quality UniGene index requires human intervention to resolve ambigu-ities that arise during automated lustering. NCBI's UniGene indies, for example,are urated and updated by a human operator as new information beomes available.This produes a more aurate lustering and a better estimate of the number ofgenes disovered.UIluster's inremental lustering apability ould provide similar apabilitiesby arrying uration deisions through lustering iterations. However, there are ur-



77rently no user-friendly tools available to failitate this. Ideally, suh an appliationwould inorporate all information output by the program inluding the math infor-mation, the extended searh data, and the virtual primaries. Additionally, outsideinformation suh as genomi sequene and annotations ould be inorporated. Thisinformation ould all be ombined to allow a human operator to resolve ambiguoussituations and �x errors disovered in the lustering results. Additional tools suh asBLAST, phrap, and GenSan ould be seletively used by a human operator to makemore informed uration deisions.A luster viewer has been implemented by the author during the ourse ofdeveloping UIluster to better visualize the omposition of lusters. This tool,written in Java [16℄ and shown in �gure 7.1, ould be extended to perform the featuresdisussed in this setion. The output of the program might be a �le ontaininguration deisions that an be input into UIluster when an inremental lusteringis being performed. UIluster would apply these deisions before lustering any newsequenes. 7.4 Cluster MergingIf an input sequene is found to be similar to more than one luster primary,this provides evidene that the mathed lusters should possibly be merged. However,merging lusters automatially due to linkage by only a single sequene is probably notthe approah to take. The luster uration tool (disussed in setion 7.3) ould presentsuh ases to an expert biologist, who ould then deide if the identi�ed lusters
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Figure 7.1: Cluster Viewershould be merged. Alternatively, lusters that are linked by multiple input sequenesmight be automatially merged by UIluster. A threshold for the minimum numberof input sequenes linking two lusters before they are automatially merged ouldbe a parameter spei�ed by the user at run-time. Merging lusters ompliates theparallelization approah that has been utilized in UIluster 3.0 sine lusters mayneed to be moved between ompute nodes. A possible alternative approah is touse the inremental lustering apabilities of the appliation to iteratively luster the



79virtual primaries. If two virtual primaries are found to be similar, then the lustersthat they represent ould possibly be merged. After several iterations, steady statewill be reahed and no additional lusters will be merged.7.5 Long Transribed SequenesThe hashing tehniques that we have employed are most useful for short ESTs(400{1000bp). The approah is also suÆient for full length DNA sequenes (1000{5000bp) and other long transribed sequenes. However, performane is degraded sig-ni�antly when lustering suh sequenes. This is thought to be due to the inreasedprobability of �nding mathing hashes between longer sequenes. Additionally, theprobability of multiple hash mathes being widely separated is greater. This reduesthe e�etiveness of the thresholding sheme we have used (disussed in setion 5.3.1).A possible solution to this problem is splitting long sequenes into smaller, overlappingwindows (e.g., an 5,000bp sequene ould be split into 9 1000bp windows, where eahsuessive window overlaps the previous window by 500bp). SoreMath would onlybe alled when the user's � threshold is met for a given window (see setion 5.3.1).The sequene omparison would start at the loations of the mathing windows inboth sequenes but the identi�ed math may extend beyond the boundaries of thesewindows in the original sequenes. The window size and degree of overlap should beparameters that are spei�ed by the user at run-time. Implementing this funtional-ity has the potential to improve the performane of the program signi�antly whenlustering full length DNA sequenes.



807.6 Automati Calulation of � 0 and �UIluster ould be made more user friendly by automatially alulatingappropriate values for � 0 and � for a spei�ed similarity riteria. This would requireobtaining the total amount of memory available and hoosing � 0 aordingly. It shouldbe noted that the value of � 0 that most losely approximates the performane obtainedby the value alulated by equation 5.3 will di�er depending on the size and noveltyof the data set being lustered and the similarity riteria used. Additionally, the usermay wish to obtain better performane by hoosing a higher � threshold than thatalulated by equation 5.4, knowing that some sequene similarities may be missed.Therefore, one approah to automatially alulating these values would be to givethe user several � 0 and � ombinations to hoose from depending what his or her goalsare and the type of data set being lustered.7.7 ExtendMath ImprovementsThe approah urrently used by the ExtendMath funtion (see setion 5.1.2.2)does not determine the end of a mathing region with enough auray to be usefulfor generating the virtual primaries. This is why the use of bl2seq was neessaryfor the virtual primary generation feature (where determining overlaps aurately isimportant). A member of our laboratory is urrently working on an improved versionof ExtendMath that will be inorporated in the next release of UIluster.
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APPENDIXUICLUSTER 3.0 SOURCE CODEA.1 Header FilesA.1.1 uiluster.h/***************************************************************************uiluster.h-----------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#define NEW(TYPE) (TYPE *)emallo(sizeof(TYPE))enum {MAXFNAME = 100,/* max filename length in hars */MAXPRE = 100,/* max num of previously lustered files */MAXSNAME = 40,/* maximum sequene name */MAXSLEN = 2000000,/* maximum sequene length */FORWARD = 1,/* indiates seq in forward diretion */REVCOMP = 2,/* indiates seq in reverse ompliment dir */NBASESONLINE = 70,/* num of bases to print per line */MAXLINE = 200000,/* maximum length of any line */A = 0,C = 1,G = 2,T = 3,SUCCESS = 1,FAILURE = 0,TRUE = 1,FALSE = 0,FAILEDHASH = -1,/* indiates that no hash ould be generated */NOHIT = 0,/* indiates no similar luster was found */NO_MORE_SEQS = -1,/* indiates that there are no more seqs ininput file */GOOD_SEQ = 0,/* indiates that input sequene is not arejet */REJECT_SEQ = 1,/* indiates that input sequene is a rejet */INTERNAL = 0,BOTHEXT = 1,TAILEXT = 2,FRONTEXT = 3,PROBLEM = 4,};typedef strut Seondary Seondary;strut Seondary {har *name; /* name of seondary sequene */har *seq; /* sequene string */double sore; /* sore of seondary (100 means perfetmath) */int iP; /* math start index in primary */



82int iS; /* math start index in seondary */int mathLen; /* math length in number of bases */int dir; /* diretion of math. FORWARD or REVCOMP */int tovp; /* how this seq aligned to the vp */Seondary *next; /* Seondary in list */};typedef strut Primary Primary;strut Primary {int lusID; /* luster ID of this primary */har *name; /* name of primary sequene */har *seq; /* sequene string */int *hashes; /* hash array for sequene string */int *indexes; /* index array for hash positions in seq */int nHashes; /* number of hashes */int nTouhed; /* used for seahing -- num times thisprimary has been examined */int nSeondaries; /* number of seondaries for this primary */Seondary *headS; /* pointer to the head seondary */Primary *nextCP; /* used for searhing -- next primary inandidate list */Primary *next; /* Primary in list *//* virtual primary related variables */har *vp; /* virtual primary */int vpLen; /* ur len of the vp */int maxvpLen; /* max length of the vp */int nBothExt; /* num seondaries extending vp on front andtail */int nFrontExt; /* num seondaries extending vp on front */int nTailExt; /* num seondaries extending vp on tail */int nInternal; /* num seondaries totally ontained in vp */int nProblems; /* num seondaries not hitting well to vp */int tovp; /* how this seq aligned to the vp */}; A.1.2 luster.h/***************************************************************************luster.h---------------begin : Sun De 12 1999author : Kevin Pedretti, Tom Casavantemail : pedretti�eng.uiowa.edu***************************************************************************/typedef strut GHTEntry GHTEntry;typedef GHTEntry *GHTEntry_p;strut GHTEntry {Primary *primary; /* pointer to the primary for this entry */GHTEntry *next; /* GHTEntry in list */};typedef strut Hit_str Hit;typedef Hit *Hit_p;strut Hit_str {int lusID; /* the lusID hit */int sore; /* the sore of the hit */int dir; /* diretion of the hit */};void luster(int, int, FILE *, FILE *, Options, Primary **, Primary *,int *, int *, int *, int *, int *, int *, int *, int *);void writeClusters(FILE *, Primary *, int, int *, har *[℄, int[℄, int,



83int);void addPrimary(int, FASTASeq *, Primary **, Primary **,int[℄, int[℄, int, GHTEntry_p[℄, int);void addSeondary(FASTASeq *, Primary *,int, int, int, int, int,int, int, GHTEntry_p[℄, int[℄, int[℄, int,Options, int *, int *, int *);void addtoGHT(GHTEntry_p *, Primary *, int);void remfromGHT(GHTEntry_p *, Primary *, int);int hashSeq(har *, int, int, int, int[℄, int[℄);int ompareSeqs(int, int,Primary *, har *,int *, int *, int,int, int, int,int *, int *, int, int, int *, int *, int *);void sortHitList(Hit_p hits, int nHits);A.1.3 ompare.h/***************************************************************************ompare.h---------------begin : Mon De 13 1999author : Tom Casavant - modified by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/int SoreMath(har *strPattern, int strPatternIndex,har *strSubjet, int strSubjetIndex,int iLengthToMath,int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,int iWrongPenalty, int iGapPenalty,int iReursiveFlag,int *nWrong_p, int *nMissing_p, int *nInserted_p);void extendMath(har *pSeq, har *Seq,int topSore, int lengthToMath, int hashSize,int radix, int skip, har maskedChar,int wrongLimit, int gapLimit, int wrongOrGapLimit,int topPIndex, int topCIndex,int wrongPenalty, int gapPenalty,int *totalErrors, int *bestLength); A.1.4 fasta.h/***************************************************************************fasta.h-------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/typedef strut FASTASeq FASTASeq;strut FASTASeq {har name[MAXSNAME℄; /* name of sequene */har *seq; /* sequene string */FASTASeq *next; /* FASTASeq in list */



84};void readSeqs(FILE *, FILE *, int, FASTASeq **, int *, int *);int readSeq(FILE *, FASTASeq *, FILE *, int, int);void printSeq(FILE *, har *, int, int);A.1.5 inremental.h/***************************************************************************inremental.h-------------------begin : Wed Jan 12 2000author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/int readClusFiles(har *, Primary **, Primary **, har *[℄, int[℄);int parseClusFile(FILE *, Primary **, Primary **, int *, int *);A.1.6 memory.h/***************************************************************************memory.h--------------begin : Tue De 14 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/enum {GHTBLOCK = 1000000,/* blok size 'GHTEntry' prealloations */PRIMEBLOCK = 300000,/* blok size for 'Primary' prealloations */SECNDBLOCK = 1000000,/* blok size for 'Seondary' prealloations */FASTABLOCK = 1000000,/* blok size for 'FASTASeq' prealloations */SEQBLOCK = 1000000,/* blok size for pralloations for sequenedata */};GHTEntry *getGHTEntry();Primary *getPrimary();Seondary *getSeondary();FASTASeq *getFASTASeq(); A.1.7 options.h/***************************************************************************options.h---------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************//* Struture ontaining all user-defined parameters. */typedef strut Options Options;strut Options {har inFile[MAXFNAME℄;har preCFile[MAXFNAME℄;int rejCrit;int hashSize;int startSkip;int endSkip;int lenToMath;int errLimit;har maskChar;



85int repik;int tryRevC;int hitThresh;int wrongPen;int gapPen;int keepGoing;int vPrimary;};/* Called from main to get user-defined parameters from the ommand-line */int getopts(Options *, int, har **);/* Prints out the user-define parameters parsed from the omman-line */void printopts(FILE *, Options);/* print ommand-line arguments and usage instrutions */void printUsage(); A.1.8 qsort.h/***************************************************************************qsort.h-------------begin : Mon De 13 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/enum {M = 7,/* threshold list size for abandoning qsort */NSTACK = 50,/* stak size, may have to inrease */NR_END = 1,/* sentinel */};#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;#define FREE_ARG har*void nrerror(har error_text[℄);int *ivetor(long nl, long nh);void free_ivetor(int *v, long nl, long nh);/* Do a quik sort on data[℄ while maintaining onsistany with index[℄.NOTE: This sort routine sorts data[1..n℄ NOT data[0..n-1℄.The aller should aount for this.*/void qsortWIndx(unsigned long n, int data[℄, int index[℄);A.1.9 utils.h/***************************************************************************utils.h-------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#define min2(X, Y) ((X) < (Y) ? (X) : (Y))#define max2(X, Y) ((X) > (Y) ? (X) : (Y))void setprogname(har *str);har *progname(void);void setversion(har *str);har *getversion(void);extern void eprintf(har *, ...);



86extern void wprintf(har *, ...);extern har *estrdup(har *);extern void *emallo(size_t);extern void *eallo(size_t, size_t);extern void *ereallo(void *, size_t);extern har *progname(void);extern void setprogname(har *);int nmallos();har *homp(har *);int ountBases(har *);int ipower(int, int);void revComp(har *in, int len);har *printTime(time_t, time_t); A.1.10 bl2seq.h/***************************************************************************bl2seq.h - desription-------------------begin : Sun Mar 18 2001opyright : (C) 2001 by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************//**************************************************************************** ** This program is free software; you an redistribute it and/or modify ** it under the terms of the GNU General Publi Liense as published by ** the Free Software Foundation; either version 2 of the Liense, or ** (at your option) any later version. ** ****************************************************************************/enum {BL2SEQ_MAXLINE = 1024,STATE_INIT = 0,STATE_STARTS = 1,STATE_LENS = 2,STATE_STRANDS = 3,PLUS = 0,MINUS = 1,PP = 0,PM = 1,MP = 2,MM = 3,};strut bl2seq_hit_str {int sb1; /* start base in sequene 1 */int sb2;int eb1; /* end base in sequene 1 */int eb2;int dir; /* diretion of hit */};typedef strut bl2seq_hit_str bl2seq_hit;void bl2seq(har *seq1, int seq1Len, har *seq2, int seq2Len,bl2seq_hit * hits, int *nHits);int all_bl2seq(har *seq1, har *seq2, har *out);A.2 Soure FilesA.2.1 main./***************************************************************************



87main. - UIluster lustering program---------------------------------------begin : Sun De 12 09:43:22 CST 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#ifdef HAVE_CONFIG_H#inlude <onfig.h>#endif#inlude <stdio.h>#inlude <stdlib.h>#inlude <string.h>#inlude <time.h>#inlude "mpi.h"#inlude "uiluster.h"#inlude "utils.h"#inlude "options.h"#inlude "fasta.h"#inlude "luster.h"#inlude "inremental.h"int main(int arg, har *argv[℄){ int myRank; /* this pros rank in MPI_COMM_WORLD */int nPros; /* num pros in MPI_COMM_WORLD */time_t startTime; /* start time of program exeution */time_t stopTime1; /* stop time before writing output file */time_t stopTime2; /* stop top after writing output file */Options opts; /* Contains user onfigurable options */FASTASeq *inseqs = NULL; /* linked list of input sequenes */Primary *primaries = NULL; /* linked list of primaries */Primary *tail = NULL; /* pointer to the last element in the primarylinked list */int nCF = 0; /* number of previously lustered files toread in */har *inFiles[MAXPRE℄; /* the names of the input previouslylustered files */int div[MAXPRE℄; /* indexes to last primary of eahpre-lustered file */har outFN[MAXFNAME℄,/* output file name */rejFN[MAXFNAME℄,/* rejet file name */logFN[MAXFNAME℄,/* log file name */orphanFN[MAXFNAME℄; /* orphan file name */FILE *fd_fasta,/* input FASTA file */*fd_out,/* output file ontaining lusters */*fd_rej,/* file ontaining rejeted sequenes */*fd_log,/* log file */*fd_orphan; /* file ontaining orphans */int nSeqs = 0,/* num of input sequenes */nRej = 0,/* num of input seqs rejeted */nPrime = 0,/* num primaries after lustering */nSend = 0,/* num seondaries after lustering */nOrph = 0,/* num of orphans */nOrphE = 0,/* num orphan events */nReadptE = 0,/* num readopt events */nRepik = 0,/* num repik events */nMathRev = 0; /* num seq mathes in the REVCOMP diretion */int stat;int i;/* initialize MPI */MPI_Init(&arg, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &myRank);



88MPI_Comm_size(MPI_COMM_WORLD, &nPros);/* reord the start time of lustering */startTime = time(NULL);setprogname("UIluster");setversion("3.0.5");/* only the rank 0 pro outputs to sreen */if (myRank == 0) {printf("\n%s %s\n", progname(), getversion());for (i = 0; i <= (strlen(progname()) + strlen(getversion())); i++) {printf("-");}printf("\n\n");}/* parse the ommand line */stat = getopts(&opts, arg, argv);if (stat == FAILURE) {eprintf(" COULDN'T PARSE COMMAND LINE.");}if (myRank == 0) {printf("Running with %d proesses.\n", nPros);printopts(stdout, opts);}/* open in input file */fd_fasta = fopen(opts.inFile, "r");if (fd_fasta == NULL) {eprintf("an't open %s:", opts.inFile);}/* build the name of this pros output file */if (nPros == 1) {sprintf(outFN, "%s.lus", opts.inFile);} else {sprintf(outFN, "%s-%d.lus", opts.inFile, myRank);}/* open the output file */fd_out = fopen(outFN, "w");if (fd_out == NULL) {eprintf("an't open %s", outFN);}/* only proess 0 outputs rejets */if (myRank == 0) {sprintf(rejFN, "%s.rej", opts.inFile);/* open the rejet file */fd_rej = fopen(rejFN, "w");if (fd_rej == NULL)eprintf("an't open %s", rejFN);}/* read in previously lustered file */if (strmp(opts.preCFile, "none") != 0) {if (myRank == 0) {printf("\nReading previously lustered files...\n");}nCF = readClusFiles(opts.preCFile, &primaries, &tail, inFiles, div);}/* perform lustering */if (myRank == 0) {printf("\nBegin Clustering...\n");



89printf("\n *status given as .num_seqs_lustered:num_new_lusters.\n\n");}if (myRank == 0) {/* only the master output rejets to the rejet file */luster(myRank, nPros, fd_fasta, fd_rej, opts, &primaries, tail,&nPrime, &nSend, &nRepik, &nOrphE, &nReadptE, &nMathRev,&nSeqs, &nRej);} else {/* set fd_rej to null so nothing is output to it */luster(myRank, nPros, fd_fasta, NULL, opts, &primaries, tail,&nPrime, &nSend, &nRepik, &nOrphE, &nReadptE, &nMathRev,&nSeqs, &nRej);}/* reord the time up until just after lustering */stopTime1 = time(NULL);/* finish up - write primaries to file and display summary stats */if (myRank == 0) {printf("\n\nWritting output...\n");}writeClusters(fd_out, primaries, NBASESONLINE, &nOrph, inFiles, div, nCF,opts.vPrimary);/* reord the stop time of the lustering */stopTime2 = time(NULL);if (myRank == 0) {printf("\n");printf("Total # Input: %7d\n", nSeqs);printf("Num Rejets: %7d\n", nRej);printf("# Seqs Clustered: %7d\n", nSeqs - nRej);printf("Num Clusters: %7d\n", nPrime);printf("Num Seondaries: %7d\n", nSend);if (opts.repik) {printf("Num Repik Events: %7d\n", nRepik);printf("Num Orphan Events: %7d\n", nOrphE);printf("Num ReAdopt Events: %7d\n", nReadptE);if (nOrph > 0)printf("Total # Orphans: %7d\n", nOrph);}if (opts.tryRevC)printf("Num Mathed Rev: %7d\n", nMathRev);printf("Total # of mallos: %7d\n", nmallos());printf("Tot Elapsed time : %s\n", printTime(startTime, stopTime2));/* printf( "Output time : %s\n", printTime(stopTime1,stopTime2)); */}/* finish up */MPI_Finalize();return EXIT_SUCCESS;} A.2.2 luster./***************************************************************************luster. - routines to luster sequenes-------------------------------------------begin : Sun De 12 1999opyright : Kevin Pedretti, Tom Casavantemail : pedretti�eng.uiowa.edu***************************************************************************/



90#inlude <stdio.h>#inlude <stdlib.h>#inlude <string.h>#inlude "mpi.h"#inlude "uiluster.h"#inlude "utils.h"#inlude "options.h"#inlude "fasta.h"#inlude "luster.h"#inlude "ompare.h"#inlude "qsort.h"#inlude "memory.h"#inlude "bl2seq.h"void luster(int myRank, int nPros, FILE * fd_fasta, FILE * fd_rej,Options opts, Primary ** head, Primary * tail, int *nPrime,int *nSend, int *nRepik, int *nOrphE, int *nReadptE,int *nMathRev, int *nSeqs, int *nRejets){ Primary *lhead; /* andidate list head */Primary *tmpP; /* temporary pointer to a Primary */FASTASeq *urC; /* urrent andidate */Primary *urP; /* urrent primary */GHTEntry_p *ght; /* global hash table */GHTEntry *tmp; /* temporary variable */int *Hashes; /* hashes for ur */int *Indexes; /* indexes for ur */int nhashes; /* num hashes for ur */har revC[MAXSLEN℄; /* holds the reverse */int *rHashes; /* hashes for revomp of ur */int *rIndexes; /* hashes for revomp of ur */int nrhashes; /* num hashes for revomp of ur */int iter = 0;int hit; /* indiates if ur mathed any primaries */int status; /* stores return odes of funtion alls */int i;int stopSearh; /* boolean indiating if the primary searhshould be stopped */strut {int sore;int rank;} myBestHit, bestHit;strut Hit_str allMyHits[10000℄;strut Hit_str allHits[10000℄;int lusID = 0;MPI_Datatype MPI_HIT;int *rounts;int *displs;int mathLen,/* initial math length */extLen,/* extended math length */nerrors; /* num errors in math */int topP, topC, nwrong, nmiss, ninsert;int bestExtLen, bestTopP, bestTopC, bestHitDir, bestNErrors;Primary *bestP;FILE *hits; /* file ontaining list of andidates and theprimaries they math */har hitsName[MAXFNAME℄;int hitCount; /* the number of lusters an inoming seqhits */Hashes = (int *) emallo(MAXSLEN * sizeof(int));Indexes = (int *) emallo(MAXSLEN * sizeof(int));rHashes = (int *) emallo(MAXSLEN * sizeof(int));rIndexes = (int *) emallo(MAXSLEN * sizeof(int));nhashes = nrhashes = 0;



91/* Define MPI_HIT datatype */MPI_Type_ontiguous(3, MPI_INT, &MPI_HIT);MPI_Type_ommit(&MPI_HIT);/* Alloate rounts and displs */if (opts.keepGoing && (myRank == 0)) {rounts = (int *) mallo(nPros * sizeof(int));displs = (int *) mallo(nPros * sizeof(int));}/* initialize memory for the global hash table */ght =(GHTEntry_p *) eallo(ipower(4, opts.hashSize), sizeof(GHTEntry_p));/* hash all of the already existing primaries */if (*head != NULL) {printf(" reating hashes for pre-existing primaries.\n");tmpP = *head;while (tmpP != NULL) {nhashes =hashSeq(tmpP->seq, opts.hashSize, opts.startSkip, opts.endSkip,Hashes, Indexes);qsortWIndx((unsigned long) nhashes, Hashes - 1, Indexes - 1);tmpP->nHashes = nhashes;tmpP->hashes = (int *) emallo(nhashes * sizeof(int));tmpP->indexes = (int *) emallo(nhashes * sizeof(int));for (i = 0; i < nhashes; i++) {tmpP->hashes[i℄ = Hashes[i℄;tmpP->indexes[i℄ = Indexes[i℄;addtoGHT(ght, tmpP, Hashes[i℄);}tmpP = tmpP->next;}}/* open a file for the list of andidates and the primaries they math */if (opts.keepGoing && (myRank == 0)) {strpy(hitsName, opts.inFile);strat(hitsName, ".hits");hits = fopen(hitsName, "w");if (hits == NULL) {eprintf("an't open %s: ", hitsName);}}/* alloate memory for urC */urC = getFASTASeq();urC->seq = (har *) emallo(MAXSLEN * sizeof(har));/* luster eah input seq one by one... */status = readSeq(fd_fasta, urC, fd_rej, opts.rejCrit, *nRejets);while (status != NO_MORE_SEQS) {++(*nSeqs);if (status == REJECT_SEQ) {++(*nRejets);} else {if (myRank == 0) {if (iter % 100 == 0) {printf("%d:%d.", iter, *nPrime);fflush(stdout);}++iter;}



92if (opts.keepGoing && (myRank == 0)) {/* print the urrent andidate name to the hits file */fprintf(hits, "%s ", urC->name);}nhashes =hashSeq(urC->seq, opts.hashSize, opts.startSkip, opts.endSkip,Hashes, Indexes);qsortWIndx((unsigned long) nhashes, Hashes - 1, Indexes - 1);lhead = NULL;hit = NOHIT;hitCount = 0;bestExtLen = 0;/* searh the GHT with the forward hashes */i = 0;stopSearh = FALSE;while ((i < nhashes) && (stopSearh != TRUE)) {if (Hashes[i℄ != FAILEDHASH) {/* get the first link at entry i of the GHT */tmp = ght[Hashes[i℄℄;while (tmp != NULL) {urP = tmp->primary;/* only hek primary when it exatly hits the threshold *//* prevents heking it more than one if keepGoing flag is on */if (urP->nTouhed == opts.hitThresh) {mathLen =ompareSeqs(opts.lenToMath,opts.lenToMath - opts.errLimit, urP,urC->seq, Hashes, Indexes, nhashes,opts.errLimit, opts.errLimit, opts.errLimit,&topP, &topC, opts.wrongPen, opts.gapPen,&nwrong, &nmiss, &ninsert);if (mathLen >= (opts.lenToMath - opts.errLimit)) {extendMath(urP->seq, urC->seq,mathLen, opts.lenToMath, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors, &extLen);hit = FORWARD;/* add the hit to the hit list */allMyHits[hitCount℄.lusID = urP->lusID;allMyHits[hitCount℄.sore = extLen;allMyHits[hitCount℄.dir = FORWARD;++hitCount;/* see if this is the best hit so far */if (extLen > bestExtLen) {bestExtLen = extLen;bestTopP = topP;bestTopC = topC;bestHitDir = FORWARD;bestNErrors = nerrors;bestP = urP;}/* stop the searh if the keepGoing flag is off */if (opts.keepGoing == 0) {stopSearh = TRUE;} }



93}if (urP->nTouhed == 0) {/* insert primary at head of andidate list */urP->nextCP = lhead;lhead = urP;}++(urP->nTouhed);tmp = tmp->next;} /* end while (tmp != NULL) */} /* end if (Hashes[i℄ != FAILEDHASH) */++i; /* move on to next hash */} /* end while ((i < nhashes) && (stopSearh !=TRUE)) *//* hek in the reverse diretion if the tryRevC option is on andeither the extended searh option is on or no hit has been found yet */if (((opts.keepGoing == 1) && (opts.tryRevC == 1))|| ((hit == NOHIT) && (opts.tryRevC == 1))) {/* reset andidate list, zeroing touhounts */urP = lhead;while (urP != NULL) {urP->nTouhed = 0;urP = urP->nextCP;}lhead = NULL;/* reverse ompliment the input sequene */strpy(revC, urC->seq);revComp(revC, strlen(revC));/* generate and sort hashes for the reverse omplement */nrhashes =hashSeq(revC, opts.hashSize, opts.startSkip, opts.endSkip,rHashes, rIndexes);qsortWIndx((unsigned long) nrhashes, rHashes - 1, rIndexes - 1);/* searh the GHT with the reverse hashes */i = 0;stopSearh = FALSE;while ((i < nrhashes) && (stopSearh != TRUE)) {if (rHashes[i℄ != FAILEDHASH) {/* get the first link at entry i of the GHT */tmp = ght[rHashes[i℄℄;while (tmp != NULL) {urP = tmp->primary;/* only hek primary when it exatly hits the threshold *//* prevents heking it more than one if keepGoing flag is on */if (urP->nTouhed == opts.hitThresh) {mathLen =ompareSeqs(opts.lenToMath,opts.lenToMath - opts.errLimit, urP,revC, rHashes, rIndexes, nrhashes,opts.errLimit, opts.errLimit,opts.errLimit, &topP, &topC, opts.wrongPen,opts.gapPen, &nwrong, &nmiss, &ninsert);if (mathLen >= (opts.lenToMath - opts.errLimit)) {extendMath(urP->seq, revC,mathLen, opts.lenToMath, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors,&extLen);



94hit = REVCOMP;/* add the hit to the hit list */allMyHits[hitCount℄.lusID = urP->lusID;allMyHits[hitCount℄.sore = extLen;allMyHits[hitCount℄.dir = REVCOMP;++hitCount;/* see if this is the best hit so far */if (extLen > bestExtLen) {bestExtLen = extLen;bestTopP = topP;bestTopC = topC;bestHitDir = REVCOMP;bestNErrors = nerrors;bestP = urP;}/* stop the searh if the keepGoing flag is off */if (opts.keepGoing == 0) {stopSearh = TRUE;}} }if (urP->nTouhed == 0) {/* insert primary at head of andidate list */urP->nextCP = lhead;lhead = urP;}++(urP->nTouhed);tmp = tmp->next;} /* end while (tmp != NULL) */} /* end if (rHashes[i℄ != FAILEDHASH) */++i; /* move on to next hash */} /* end while ((i < nrhashes) && (stopSearh!= TRUE)) */}/* figure out what my best hit is */if (hitCount > 0) {/* sort the hit list by sore */sortHitList(allMyHits, hitCount);/* best hit will be at position 0 */myBestHit.sore = allMyHits[0℄.sore;} else {myBestHit.sore = 0;}myBestHit.rank = myRank;/* ommuniate the best hit to all pros */MPI_Allredue(&myBestHit, &bestHit, 1, MPI_2INT, MPI_MAXLOC,MPI_COMM_WORLD);if (bestHit.sore == 0) { /* ur is a new primary */++(*nPrime);/* hek if this pro should get assigned this luster */if ((*nPrime % nPros) == myRank) {addPrimary(lusID, urC, head, &tail, Hashes, Indexes, nhashes,ght, opts.vPrimary);++lusID;



95}/* master pro writes to hits file if keepGoing flag is on */if ((myRank == 0) && (opts.keepGoing == 1)) {fprintf(hits, "NO HITS\n");} } else { /* ur gets added someplae */++(*nSend);/* gather a list of all hits to the master pro if the keepGoing flagis on */if (opts.keepGoing) {/* gather list of all hits to root node to put in the hits file */MPI_Gather(&hitCount, 1, MPI_INT, rounts, 1, MPI_INT, 0,MPI_COMM_WORLD);if (myRank == 0) {displs[0℄ = 0;for (i = 1; i < nPros; i++) {displs[i℄ = displs[i - 1℄ + rounts[i - 1℄;}}MPI_Gatherv(allMyHits, hitCount, MPI_HIT, allHits, rounts,displs, MPI_HIT, 0, MPI_COMM_WORLD);/* only master pro writes to the file */if (myRank == 0) {int nAllHits = displs[nPros - 1℄ + rounts[nPros - 1℄;/* sort the hit list before writing it */sortHitList(allHits, nAllHits);for (i = 0; i < nAllHits; i++) {fprintf(hits, "%d.%d:", allHits[i℄.lusID, allHits[i℄.sore);if (allHits[i℄.dir == FORWARD) {fprintf(hits, "f ");} else {fprintf(hits, "r ");}}fprintf(hits, "\n");}}/* add the input sequene to the luster it hit the best */if (bestHit.rank == myRank) {addSeondary(urC, bestP, bestTopP, bestTopC, bestExtLen,bestNErrors, bestHitDir, opts.repik, opts.vPrimary,ght, Hashes, Indexes, nhashes, opts, nRepik,nOrphE, nReadptE);// addSeondary(urC, urP, topP, topC, extLen, nerrors, hit,// opts.repik, opts.vPrimary, ght, Hashes, Indexes, nhashes,// opts,// nRepik, nOrphE, nReadptE);} }/* Reset andidate list */urP = lhead;while (urP != NULL) {urP->nTouhed = 0;urP = urP->nextCP;}} /* end if (status != REJECT_SEQ) */



96/* read the next input sequene */status = readSeq(fd_fasta, urC, fd_rej, opts.rejCrit, *nRejets);} /* end main lustering loop */}void addPrimary(int lusID, FASTASeq * new, Primary ** head,Primary ** tail, int hashes[℄, int indexes[℄, int nhashes,GHTEntry_p ght[℄, int vPrimary){ int i;Primary *p = getPrimary();p->lusID = lusID;p->name = (har *) emallo((strlen(new->name) + 1) * sizeof(har));p->seq = (har *) emallo((strlen(new->seq) + 1) * sizeof(har));strpy(p->name, new->name);strpy(p->seq, new->seq);/* only do the following only if virtual primary option is enabled */if (vPrimary == 1) {/* vp starts out as seq of first sequene added */p->vp = (har *) emallo((strlen(p->seq) * 2) + 1);strpy(p->vp, p->seq);p->vpLen = strlen(p->seq);p->maxvpLen = strlen(p->seq) * 2;p->nFrontExt = 0;p->nTailExt = 0;p->nBothExt = 0;p->nInternal = 0;p->nProblems = 0;p->tovp = INTERNAL;}p->hashes = (int *) emallo(nhashes * sizeof(int));p->indexes = (int *) emallo(nhashes * sizeof(int));/* enter the hashes into the GHT */for (i = 0; i < nhashes; i++) {p->hashes[i℄ = hashes[i℄;p->indexes[i℄ = indexes[i℄;addtoGHT(ght, p, hashes[i℄);}/* initialize variables in primary struture */p->nHashes = nhashes;p->nSeondaries = 0;p->nTouhed = 0;p->headS = NULL;p->nextCP = NULL;p->next = NULL;/* Add primary to the main primary list */if (*head != NULL) {(*tail)->next = p;*tail = p;} else {*head = *tail = p;}}void addSeondary(FASTASeq * new, Primary * p,int iP, int iS, int mathLen, int errors, int dir,int repik, int vPrimary, GHTEntry_p ght[℄, int hashes[℄,int indexes[℄, int nhashes, Options opts, int *nRepik,



97int *nOrphanE, int *nReadptE){ Seondary *tmpS;Seondary *s = getSeondary();int lenOld, lenNew;int i;har strTmp[MAXSLEN℄;int nlhashes;int *Hashes;int *Indexes;int lmathLen;int topP, topC, nwrong, nmiss, ninsert;int nerrors;int extLen;bl2seq_hit bl2Hits[1000℄;int nbl2Hits;++(p->nSeondaries);s->next = p->headS;p->headS = s;/* determine if the seondary should beome the primary for the luster */if (repik) {lenOld = ountBases(p->seq);lenNew = ountBases(new->seq);}if (lenNew > lenOld) {/* repik */++(*nRepik);s->name = p->name;s->seq = p->seq;s->iP = 0;s->iS = 0;s->mathLen = 0;s->sore = 0.0;s->dir = FORWARD;p->name = (har *) emallo((strlen(new->name) + 1) * sizeof(har));p->seq = (har *) emallo((strlen(new->seq) + 1) * sizeof(har));strpy(p->name, new->name);strpy(p->seq, new->seq);if (vPrimary == 0) {/* remove old primary from ght */for (i = 0; i < p->nHashes; i++) {remfromGHT(ght, p, p->hashes[i℄);}free(p->hashes);free(p->indexes);/* add the new primaries hashes to the ght */p->hashes = (int *) emallo(nhashes * sizeof(int));p->indexes = (int *) emallo(nhashes * sizeof(int));for (i = 0; i < nhashes; i++) {p->hashes[i℄ = hashes[i℄;p->indexes[i℄ = indexes[i℄;addtoGHT(ght, p, hashes[i℄);}p->nHashes = nhashes;/* reluster all of the seondaries */Hashes = (int *) emallo(MAXSLEN * sizeof(int));



98Indexes = (int *) emallo(MAXSLEN * sizeof(int));tmpS = p->headS;for (i = 0; i < p->nSeondaries; i++) {if (tmpS->dir == FORWARD) {strpy(strTmp, tmpS->seq);} else {strpy(strTmp, tmpS->seq);revComp(strTmp, strlen(strTmp));}nlhashes =hashSeq(strTmp, opts.hashSize, opts.startSkip, opts.endSkip,Hashes, Indexes);qsortWIndx((unsigned long) nlhashes, Hashes - 1, Indexes - 1);mathLen = topP = topC = 0;nwrong = nmiss = ninsert = 0;lmathLen =ompareSeqs(opts.lenToMath, opts.lenToMath - opts.errLimit,p, strTmp, Hashes, Indexes, nlhashes,opts.errLimit, opts.errLimit, opts.errLimit, &topP,&topC, opts.wrongPen, opts.gapPen, &nwrong, &nmiss,&ninsert);if (lmathLen >= (opts.lenToMath - opts.errLimit)) {nerrors = extLen = 0;extendMath(p->seq, strTmp,lmathLen, opts.lenToMath, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors, &extLen);/* Update the math info */if ((tmpS->sore == 0) && (i != 0))++(*nReadptE);tmpS->iP = topP;tmpS->iS = topC;tmpS->sore =(((double) (lmathLen - nerrors)) / lmathLen) * 100.0;tmpS->mathLen = extLen;} else {++(*nOrphanE);tmpS->iP = 0;tmpS->iS = 0;tmpS->sore = 0;tmpS->mathLen = 0;}tmpS = tmpS->next;}free(Hashes);free(Indexes);} /* end if (vPrimary == 0) */} else {/* no repik, add seondary */s->name = (har *) emallo((strlen(new->name) + 1) * sizeof(har));s->seq = (har *) emallo((strlen(new->seq) + 1) * sizeof(har));strpy(s->name, new->name);strpy(s->seq, new->seq);s->iP = iP;if (dir == FORWARD)s->iS = iS;



99elses->iS = strlen(s->seq) - iS;s->mathLen = mathLen;if (dir == REVCOMP)s->mathLen *= -1;s->sore = (((double) (mathLen - errors)) / mathLen) * 100.0;s->dir = dir;}/* Try to extend the vp */if (vPrimary == 1) {int seqLen = strlen(s->seq);int lag = 4; /* aeptable error for overlaps */int maxMultiHit = 40; /* maximum length in bases of non-best hitsbefore * sequene is onsidered a"problem" */int minBestHitLen = 50; /* minimum length of a best hit in order toextend vp */int done = FALSE;int ext = FALSE;/* all bl2seq. returns sorted hit list and number of hits */bl2seq(p->vp, p->vpLen, s->seq, seqLen, bl2Hits, &nbl2Hits);if (nbl2Hits > 0) {if (nbl2Hits > 1) {/* There was more than one hit */int lenOf2Hit = bl2Hits[1℄.eb1 - bl2Hits[1℄.sb1;if (lenOf2Hit > maxMultiHit) {++(p->nProblems);done = TRUE;} }if (done == FALSE) {/* see if the vp an be extended *//* best hit will be in bl2Hits[0℄ */int sb1 = bl2Hits[0℄.sb1; /* start base in vp */int sb2 = bl2Hits[0℄.sb2; /* start base in new seq */int eb1 = bl2Hits[0℄.eb1; /* end base in vp */int eb2 = bl2Hits[0℄.eb2; /* end base in new seq */int dir = bl2Hits[0℄.dir; /* diretion of hit -- see bl2seq. */int len1 = p->vpLen; /* urrent length of the vp */int len2 = seqLen; /* length of the new sequene */int lenOfHit = eb1 - sb1; /* len of the best hit */int ff1 = sb1; /* front fringe */int ef1 = len1 - eb1 - 1; /* end fringe */int ff2 = sb2;int ef2 = len2 - eb2 - 1;if ((lenOfHit > minBestHitLen) && (dir == PP)) {/* Chek for internal hit */if ((ff2 < lag) && (ef2 < lag)) {/* hit identified as internal */++(p->nInternal);} else if ((ff1 < lag) && (ef1 < lag) && (ff2 > lag)&& (ef2 > lag)) {/* hit identified to extend vp on both front and end */++(p->nBothExt);ext = TRUE;if (len2 > p->maxvpLen) {free(p->vp);



100p->maxvpLen = len2 * 2;p->vp = (har *) emallo(p->maxvpLen);}p->vpLen = len2;/* new sequene beomes new vp */strpy(p->vp, s->seq);} else if ((ef1 < lag) && (ff2 < lag) && (ef2 > lag)) {/* hit identified to extend tail of vp */int sb; /* base to start opying at */int lenApp; /* length of appended region */++(p->nTailExt);ext = TRUE;sb = eb2 + (len1 - eb1);lenApp = strlen(s->seq + sb);/* alloate more spae for vp if neessary */if (len1 + lenApp) {p->maxvpLen = (len1 + lenApp) * 2;p->vp = ereallo(p->vp, p->maxvpLen);}strpy(p->vp + len1, s->seq + (eb2 + (len1 - eb1)));} else if ((ff1 < lag) && (ef2 < lag) && (ff2 > lag)) {/* hit identified to extend front of vp */int sb; /* base to start opying at */int lenApp; /* length of appended region */++(p->nFrontExt);ext = TRUE;sb = sb2 - sb1;lenApp = sb2 - sb1;/* alloate more spae for vp if neessary */if (len1 + lenApp) {p->maxvpLen = (len1 + lenApp) * 2;p->vp = ereallo(p->vp, p->maxvpLen);}/* shift urrent vp to right */memmove(p->vp + lenApp, p->vp, len1 + 1);mempy(p->vp, s->seq, lenApp);} else {/* problem hit */++(p->nProblems);}/* if extention was made, remove old hashes from GHT * and add newhashes to it */if (ext == TRUE) {int *newHashes = (int *) emallo(MAXSLEN * sizeof(int));int *newIndexes = (int *) emallo(MAXSLEN * sizeof(int));/* remove old primary from ght */for (i = 0; i < p->nHashes; i++) {remfromGHT(ght, p, p->hashes[i℄);}free(p->hashes);free(p->indexes);/* add the new vps hashes to the ght */p->nHashes =hashSeq(p->vp, opts.hashSize, opts.startSkip, opts.endSkip,newHashes, newIndexes);qsortWIndx((unsigned long) p->nHashes, newHashes - 1,newIndexes - 1);p->hashes = (int *) emallo(p->nHashes * sizeof(int));



101p->indexes = (int *) emallo(p->nHashes * sizeof(int));for (i = 0; i < (p->nHashes); i++) {p->hashes[i℄ = newHashes[i℄;p->indexes[i℄ = newIndexes[i℄;addtoGHT(ght, p, newHashes[i℄);}free(newHashes);free(newIndexes);}} else {printf("best hit dir = %d\n", dir);printf("len of hit = %d\n", lenOfHit);} }} else {/* There were no bl2seq hits */printf("THIS SHOULD NEVER HAPPEN\n");}}}void addtoGHT(GHTEntry_p * ght, Primary * primary, int hash){ GHTEntry *tmp;if (hash != FAILEDHASH) {if (ght[hash℄ != NULL) {if (ght[hash℄->primary != primary) {/* The primary isn't in the list. Always insert at head. */tmp = getGHTEntry();tmp->primary = primary;tmp->next = ght[hash℄;ght[hash℄ = tmp;}} else {ght[hash℄ = getGHTEntry();ght[hash℄->primary = primary;ght[hash℄->next = NULL;}}}void remfromGHT(GHTEntry_p * ght, Primary * primary, int hash){ GHTEntry *tmp, *last = NULL;if (hash != FAILEDHASH) {tmp = ght[hash℄;while (tmp != NULL) {if (tmp->primary == primary) {if (last == NULL) {ght[hash℄ = tmp->next;} else {last->next = tmp->next;}return;}last = tmp;tmp = tmp->next;}}}



102int hashSeq(har *seq, int hs, int ss, int es, int hsh[℄, int idx[℄){ int len; /* holds length of seq */int i, j; /* standard ounters */int h; /* the urrent hash is built in h */int nhashes = 0; /* num hashes generated ounter */len = strlen(seq);for (i = ss; i < (len - es); i++) {if (i < (len - (hs - 1))) {/* Calulate the hash for this base */h = j = 0; /* initialize hash and loop ounter */while ((j < hs) && (h != FAILEDHASH)) {if (seq[i + j℄ == 'A') {h += (A * ipower(4, j));} else if (seq[i + j℄ == 'C') {h += (C * ipower(4, j));} else if (seq[i + j℄ == 'G') {h += (G * ipower(4, j));} else if (seq[i + j℄ == 'T') {h += (T * ipower(4, j));} else {h = FAILEDHASH;}++j; }hsh[i - ss℄ = h;idx[i - ss℄ = i;++nhashes;}}return (nhashes);}int ompareSeqs(int iLengthToMath, int iGoodSore,Primary * urP_p, har *strCSeq,int *iaCHashes, int *iaCIndexes, int iCNumHashes,int wrongLimit, int gapLimit, int wrongOrGapLimit,int *topPIndex, int *topCIndex,int iWrongPenalty, int iGapPenalty,int *nFoundWrong, int *nFoundMissing, int *nFoundInserted){ int topSore, sore;int iP, iC, iCStart;int iPNumHashes;int iPSeqLen, iCSeqLen;int i, numMasked;iP = iC = 0;while (urP_p->hashes[iP℄ == FAILEDHASH)iP++;while (iaCHashes[iC℄ == FAILEDHASH)iC++;iPNumHashes = urP_p->nHashes;iPSeqLen = strlen(urP_p->seq);iCSeqLen = strlen(strCSeq);// printf("numHashesP = %d, numHashesC = %d\n", iPNumHashes, iCNumHashes);topSore = sore = 0;while ((iP < iPNumHashes) && (iC < iCNumHashes)) {if (urP_p->hashes[iP℄ == iaCHashes[iC℄) {iCStart = iC;



103while ((urP_p->hashes[iP℄ == iaCHashes[iC℄) && (iP <= iPNumHashes)) {while ((urP_p->hashes[iP℄ == iaCHashes[iC℄)&& (iC <= iCNumHashes)) {if ((urP_p->indexes[iP℄ <= (iPSeqLen - iLengthToMath))&& (iaCIndexes[iC℄ <= (iCSeqLen - iLengthToMath))) {/* Only all sore math if the math has the potential to bemore left than the previous best math */if (((urP_p->indexes[iP℄ + iaCIndexes[iC℄) <(*topPIndex + *topCIndex)) || (topSore == 0)) {/* Only all sore math if there are not more than wrongLimitmasked haraters in a iLengthToMath Region */numMasked = 0;for (i = iaCIndexes[iC℄;i < (iaCIndexes[iC℄ + iLengthToMath); i++) {if (strCSeq[i℄ == 'X')++numMasked;}if (numMasked <= wrongLimit) {sore = SoreMath(urP_p->seq, urP_p->indexes[iP℄,strCSeq, iaCIndexes[iC℄, iLengthToMath,wrongLimit, gapLimit, wrongOrGapLimit,iWrongPenalty, iGapPenalty, 0,/* reursiveFlag*/nFoundWrong, nFoundMissing,nFoundInserted);if (sore >= iGoodSore) {topSore = sore;*topPIndex = urP_p->indexes[iP℄;*topCIndex = iaCIndexes[iC℄;} }}}iC++;}iC = iCStart;iP++; }} else { /* the hashes dont math */if (urP_p->hashes[iP℄ > iaCHashes[iC℄) {iC++; } else {iP++; }}} /* end while !foundCluster && iP && iC */return (topSore);}void writeClusters(FILE * fd, Primary * head, int bpl, int *nOrph,har *inFiles[℄, int div[℄, int nCF, int vPrimary){ Primary *p;Seondary *s;int orph;int nblanks = 1; /* num blank lines to put between sequenes */



104int i, j;FILE *fd_out;har newCF[MAXFNAME + 1℄;p = head;orph = 0;/* write new versions of previously lustered files */if (nCF > 0) {j = 0;for (i = 0; i < nCF; i++) {if (strlen(inFiles[i℄) > (MAXFNAME - 5)) {eprintf(" output filename too long.\n");}strpy(newCF, inFiles[i℄);strat(newCF, ".out");printf(" Writing %s...\n", newCF);fd_out = fopen(newCF, "w");if (fd_out == NULL)eprintf("an't open %s:", newCF);while (j < div[i℄) {fprintf(fd_out, "�P: %s %d\n", p->name, p->lusID);printSeq(fd_out, p->seq, bpl, nblanks);if (vPrimary == 1) {fprintf(fd_out, "�VP: %d %d %d %d %d\n", p->nInternal,p->nBothExt, p->nFrontExt, p->nTailExt, p->nProblems);printSeq(fd_out, p->vp, bpl, nblanks);}s = p->headS;while (s != NULL) {fprintf(fd_out, "�S: %s %d %d %d %f ", s->name, s->iP, s->iS,s->mathLen, s->sore);if (s->dir == FORWARD)fprintf(fd_out, "%s", "FORWARD ");elsefprintf(fd_out, "%s", "REVCOMP ");if (s->sore == 0) {fprintf(fd_out, "%s", "ORPHAN");++orph;}fprintf(fd_out, "\n");printSeq(fd_out, s->seq, bpl, nblanks);s = s->next;}p = p->next;++j; }flose(fd_out);}}while (p != NULL) {fprintf(fd, "�P: %s\n", p->name);printSeq(fd, p->seq, bpl, nblanks);if (vPrimary == 1) {fprintf(fd, "�VP: %d %d %d %d %d\n", p->nInternal, p->nBothExt,p->nFrontExt, p->nTailExt, p->nProblems);printSeq(fd, p->vp, bpl, nblanks);}



105s = p->headS;while (s != NULL) {fprintf(fd, "�S: %s %d %d %d %f ", s->name, s->iP, s->iS,s->mathLen, s->sore);if (s->dir == FORWARD)fprintf(fd, "%s", "FORWARD ");elsefprintf(fd, "%s", "REVCOMP ");if (s->sore == 0) {fprintf(fd, "%s", "ORPHAN");++orph;}fprintf(fd, "\n");printSeq(fd, s->seq, bpl, nblanks);s = s->next;}p = p->next;}*nOrph = orph;}/* simple insertion sort to sort hit list */void sortHitList(Hit_p hits, int nHits){ int i;Hit_p a = hits;int l = 0;int r = nHits - 1;for (i = r; i > l; i--) {if (a[i℄.sore > a[i - 1℄.sore) {Hit t = a[i - 1℄;a[i - 1℄ = a[i℄;a[i℄ = t;}}for (i = l + 2; i <= r; i++) {int j = i;Hit v = a[i℄;while (v.sore > a[j - 1℄.sore) {a[j℄ = a[j - 1℄;j--;}a[j℄ = v;}} A.2.3 ompare./***************************************************************************ompare. - routines to ompare sequenes-----------------------------------------begin : Mon De 13 1999author : Tom Casavant, modified by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude "uiluster.h"#inlude "options.h"#inlude "fasta.h"#inlude "luster.h"#inlude "ompare.h"



106#inlude "utils.h"int SoreMath(har *strPattern, int strPatternIndex,har *strSubjet, int strSubjetIndex,int iLengthToMath,int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,int iWrongPenalty, int iGapPenalty,int iReursiveFlag,int *nWrong_p, int *nMissing_p, int *nInserted_p){ int _iSore, _iMissingSore, _iWrongSore, _iInseredSore;stati int iLoalWrong, iLoalMissing, iLoalInserted;/* Initialize */if (!iReursiveFlag) {iLoalWrong = iLoalMissing = iLoalInserted = 0;*nWrong_p = iWrongLimit;*nMissing_p = *nInserted_p = iGapLimit;}if ((iLengthToMath == 0) || (iLoalWrong > iWrongLimit)|| ((iLoalMissing + iLoalInserted) > iGapLimit)|| ((iLoalMissing + iLoalInserted + iLoalWrong) >iWrongOrGapLimit)) {/* base of reursion */if ((iLengthToMath == 0) && (iLoalWrong <= iWrongLimit)&& ((iLoalMissing + iLoalInserted) <= iGapLimit)&& ((iLoalMissing + iLoalInserted + iLoalWrong) <=iWrongOrGapLimit)) {if ((iLoalWrong + iLoalMissing + iLoalInserted) <((*nMissing_p) + (*nInserted_p) + (*nWrong_p))) {*nWrong_p = iLoalWrong;*nMissing_p = iLoalMissing;*nInserted_p = iLoalInserted;}_iSore = 0;return (_iSore);} else {_iSore = 0;return (_iSore);}} else { /* reursion */if (strPattern[strPatternIndex℄ == strSubjet[strSubjetIndex℄) {_iSore =1 + SoreMath(strPattern, strPatternIndex + 1, strSubjet,strSubjetIndex + 1, iLengthToMath - 1,iWrongLimit, iGapLimit, iWrongOrGapLimit,iWrongPenalty, iGapPenalty, TRUE,/* iReursiveFlag*/nWrong_p, nMissing_p, nInserted_p);return (_iSore);} else { /* test for a possible missing, inserted orwrong base */iLoalWrong += iWrongPenalty;_iWrongSore =SoreMath(strPattern, strPatternIndex + 1, strSubjet,strSubjetIndex + 1, iLengthToMath - 1, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iReursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLoalWrong -= iWrongPenalty;iLoalMissing += iGapPenalty;_iMissingSore =



107SoreMath(strPattern, strPatternIndex + 1, strSubjet,strSubjetIndex, iLengthToMath - 1, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iReursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLoalMissing -= iGapPenalty;iLoalInserted += iGapPenalty;_iInseredSore =SoreMath(strPattern, strPatternIndex, strSubjet,strSubjetIndex + 1, iLengthToMath, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iReursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLoalInserted -= iGapPenalty;if ((_iWrongSore >= _iMissingSore)&& (_iWrongSore >= _iInseredSore)) {_iSore = _iWrongSore;} else {if (_iMissingSore >= _iInseredSore) {_iSore = _iMissingSore;} else { /* (_iInseredSore > _iMissingSore) */_iSore = _iInseredSore;} }return (_iSore);}} /* end of reursion subase */} /* end of SoreMath */
stati int *tmpCHashPrefix = NULL;stati int *tmpCHashPrefixIndex = NULL;stati int *tmpPHashPrefix = NULL;stati int *tmpPHashPrefixIndex = NULL;void extendMath(har *pSeq, har *Seq,int topSore, int lengthToMath, int hashSize,int radix, int skip, har maskedChar,int wrongLimit, int gapLimit, int wrongOrGapLimit,int topPIndex, int topCIndex,int wrongPenalty, int gapPenalty,int *totalErrors, int *bestLength){ int growTryLength;int minGrowWindowC, minGrowWindowP, growWindowC, growWindowP;int numCHashes, numPHashes;int growing, foundGrowStart;int maskedIndex;int prevCandPIndex, prevCandCIndex, andCIndex, andPIndex;int sore;int nFoundWrong, nFoundMissing, nFoundInserted;int growWrongLimit, growGapLimit, growWrongOrGapLimit = 0;*totalErrors = lengthToMath - topSore;



108/* Then we found a Primary that mathed the urrent Candidate. The *approah is to try to append regions of lengthToMath until the end * ofone sequene or until a shorter segment has to be appended. This * anheppen for several reasons: a) the one sequene or the other is * tooshort, b) the hases are -1 in the end of the region most * reentlyappended, or ) the new overlapping region is shorter * than theattempted length being appended. To do this we have to * re-sort thehashes aording to index instead of by hash value. We * use a ouple oftmp arrays to hold these indies. */if (tmpPHashPrefix == NULL) {tmpPHashPrefix = (int *) emallo(MAXSLEN * sizeof(int));tmpCHashPrefix = (int *) emallo(MAXSLEN * sizeof(int));tmpPHashPrefixIndex = (int *) emallo(MAXSLEN * sizeof(int));tmpCHashPrefixIndex = (int *) emallo(MAXSLEN * sizeof(int));}numPHashes =hashSeq(pSeq, hashSize, skip, 0, tmpPHashPrefix,tmpPHashPrefixIndex);numCHashes =hashSeq(Seq, hashSize, skip, 0, tmpCHashPrefix,tmpCHashPrefixIndex);growing = TRUE;*bestLength = topSore;prevCandPIndex = -1;prevCandCIndex = -1;andCIndex = topCIndex + *bestLength;andPIndex = topPIndex + *bestLength;/* This is the main loop whih ontinues to add segments as * long as theprevious segment added was of maximum length. * As soon as the attemptedlength to be added is shorter than * the maximum length (lengthToMath)we set the growing flag * to FALSE. Note, that this is initially truebefore entering * this loop and that there are many ways that growth anend. * It is important that in eah lause below, if an ation is *taken or ondition deteted, that indiates that further * growth willnot be possible after trying to math the * urrent segment, we have toset the growing flag to FALSE. */while (growing) {/* Now we must bound the new attempted growth region by the * length ofthe shorter of the two sequenes */growTryLength = lengthToMath;if ((andCIndex + growTryLength) > strlen(Seq)) {growTryLength = strlen(Seq) - andCIndex;growing = FALSE;}if ((andPIndex + growTryLength) > strlen(pSeq)) {growTryLength = strlen(pSeq) - andPIndex;growing = FALSE;}/* Now the maximum length of the attempted growth region is * determined.Next we have to determine the starting * position in the urrentlygrown region to begin the * extension. This is done by omparing thehash values in the * region just before the end of the previoussegment to have * been appended. HOWEVER, before that, we must makesure we * arent omparing FAILED_HASH values. The first segment of *ode below sans bakward over the FAILE_DHASH values, and * theseond segment looks bakward from there for a hash * math. The firstblok may result in setting growing to * FALSE. The seond blok may



109not. *//* First blok: Find the non-failed hashes region */minGrowWindowC = 0;while ((minGrowWindowC < growTryLength)&& (tmpCHashPrefix[andCIndex - skip - minGrowWindowC℄ ==FAILEDHASH)) {minGrowWindowC++;}minGrowWindowP = 0;while ((minGrowWindowP < growTryLength)&& (tmpPHashPrefix[andPIndex - skip - minGrowWindowP℄ ==FAILEDHASH)) {minGrowWindowP++;}if ((minGrowWindowC > 0) || (minGrowWindowP > 0)) {growing = FALSE;}/* Now find the first mathing non-failed hash *//* The next 2 lines are needed in ase the first loop is never *exeuted. For instane, if the hashes math right away * -- whih"should" be ommon */growWindowP = minGrowWindowP;growWindowC = minGrowWindowC;foundGrowStart = (tmpCHashPrefix[andCIndex - skip - growWindowC℄== tmpPHashPrefix[andPIndex - skip - growWindowP℄);for (growWindowC = minGrowWindowC;(growWindowC < growTryLength) && (!foundGrowStart); growWindowC++) {for (growWindowP = minGrowWindowP;(growWindowP < growTryLength) && (!foundGrowStart);growWindowP++) {foundGrowStart = (tmpCHashPrefix[andCIndex - skip - growWindowC℄== tmpPHashPrefix[andPIndex - skip -growWindowP℄);} /* end for growWindowP */} /* end for growWindowC */andCIndex -= growWindowC;andPIndex -= growWindowP;/* Now we safeguard that we don't have a pathologial ase in whih * thenew andidate site is idential to the previous one with just * enougherrors in the previous grow region to make them look * different */if ((prevCandPIndex == andPIndex) || (prevCandCIndex == andCIndex)) {foundGrowStart = FALSE;} else {prevCandPIndex = andPIndex;prevCandCIndex = andCIndex;}if (foundGrowStart) {growWrongLimit =((double) wrongLimit / (double) lengthToMath) *(double) growTryLength;growWrongLimit = min2((growWrongLimit + 1), (growTryLength - 1));growGapLimit =((double) gapLimit / (double) lengthToMath) *(double) growTryLength;growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));growWrongOrGapLimit =((double) wrongOrGapLimit / (double) lengthToMath) *(double) growTryLength;



110growWrongOrGapLimit =min2((growWrongOrGapLimit + 1), (growTryLength - 1));sore = SoreMath(pSeq, andPIndex, Seq, andCIndex, growTryLength,growWrongLimit, growGapLimit, growWrongOrGapLimit,wrongPenalty, gapPenalty, FALSE,/* reursiveFlag*/&nFoundWrong, &nFoundMissing, &nFoundInserted);} else {growTryLength = 0;growing = FALSE;sore = 0;}if ((sore > 0) && (sore < (growTryLength - growWrongOrGapLimit))) {growing = FALSE;while (sore < (growTryLength - growWrongOrGapLimit)&& (growTryLength > 1)) {growTryLength--;growWrongLimit =((double) wrongLimit / (double) lengthToMath) *(double) growTryLength;growWrongLimit = min2((growWrongLimit + 1), (growTryLength - 1));growGapLimit =((double) gapLimit / (double) lengthToMath) *(double) growTryLength;growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));growWrongOrGapLimit =((double) wrongOrGapLimit / (double) lengthToMath) *(double) growTryLength;growWrongOrGapLimit =min2((growWrongOrGapLimit + 1), (growTryLength - 1));sore =SoreMath(pSeq, andPIndex, Seq, andCIndex, growTryLength,growWrongLimit, growGapLimit, growWrongOrGapLimit,wrongPenalty, gapPenalty, FALSE,/* reursiveFlag */&nFoundWrong, &nFoundMissing, &nFoundInserted);}}*bestLength += (growTryLength - max2(growWindowC, growWindowP));// printf("Best Length: %d\n", *bestLength);*totalErrors += (growTryLength - sore);andCIndex += (growTryLength - growWindowC);andPIndex += (growTryLength - growWindowP);maskedIndex = 0;while ((Seq[andCIndex + maskedIndex℄ == maskedChar)&& (pSeq[andPIndex + maskedIndex℄ == maskedChar)) {maskedIndex++;}if ((maskedIndex > 0)&& (Seq[andCIndex + maskedIndex℄ ==pSeq[andPIndex + maskedIndex℄)) {andCIndex += maskedIndex;andPIndex += maskedIndex;*bestLength += maskedIndex;}if ((Seq[andCIndex℄ == '\0') || (pSeq[andPIndex℄ == '\0')) {growing = FALSE;}}



111} A.2.4 fasta./***************************************************************************fasta. - routines for working with fastA files-------------------------------------------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude <string.h>#inlude "uiluster.h"#inlude "utils.h"#inlude "fasta.h"#inlude "options.h"#inlude "luster.h"#inlude "memory.h"stati har *inLine; /* buffer to hold urrent input line */stati har *tag; /* the urrent tag line, sans > */stati har *inseq; /* buffer for urrent seq */int readSeq(FILE * fd_fasta, FASTASeq * seq, FILE * fd_rej, int r,int nRejets){ int seqLen; /* length of urrent input seq */int fs; /* the index of the first spae in the tagline */int i;har *status;if (inLine == NULL) {inLine = (har *) emallo(MAXLINE * sizeof(har));tag = (har *) emallo(MAXLINE * sizeof(har));inseq = (har *) emallo(MAXSLEN * sizeof(har));}/* read until first sequene found */status = fgets(inLine, MAXLINE, fd_fasta);while ((status != NULL) && (inLine[0℄ != '>')) {inLine = fgets(inLine, MAXLINE, fd_fasta);}/* if the start of a sequene was found, read it into memory */if (inLine[0℄ == '>') {homp(inLine);strpy(tag, inLine + 1);/* read the sequene data */seqLen = 0;inseq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd_fasta);while ((status != NULL) && (inLine[0℄ != '>')) {seqLen += strlen(homp(inLine));strat(inseq, inLine);status = fgets(inLine, MAXLINE, fd_fasta);}/* if the next sequene was found, put bak inLine */if (inLine[0℄ == '>') {fseek(fd_fasta, -(strlen(inLine)), SEEK_CUR);



112}/* make sure the input sequene isn't too long */if (seqLen >= MAXSLEN) {eprintf("Sequene %s > MAXSLEN (%d)\n", tag, seqLen);}/* hek to see if input sequene is a rejet */if (ountBases(inseq) <= r) {/* if we have a handle on the rejet file, output the rejet to it */if (fd_rej != NULL) {fprintf(fd_rej, "%d. %s\n", nRejets + 1, tag);printSeq(fd_rej, inseq, NBASESONLINE, 1);}return REJECT_SEQ;}/* find the first spae */i = fs = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++;}fs = i;printf("fs=%d, %s\n", fs, tag);/* store the sequene name */if (fs == 0) {fs = MAXSNAME - 1;}strnpy(seq->name, tag, fs);seq->name[fs℄ = '\0';printf("\n1: %s\n", seq->name);/* store the sequene */strpy(seq->seq, inseq);return GOOD_SEQ;}/* if we got here, there are no more seqs */return NO_MORE_SEQS;}/* readSeqs: reads fasta seqs into linked list rejetingthose with fewer than r bases */void readSeqs(FILE * fd, FILE * fdRej, int r, FASTASeq ** head,int *nSeqs, int *nRej){ har *inLine; /* buffer to hold urrent input line */har *tag; /* the urrent tag line, sans > */har *seq; /* buffer for urrent seq */int seqLen; /* length of urrent input seq */FASTASeq *tail; /* tail seq in list */FASTASeq *tmp; /* urrent input seq */int ns = 0; /* number of sequenes read */int rej = 0; /* number of sequenes rejeted (shorter thanr) */int fs; /* the index of the first spae in the tagline */int i;har *status;inLine = (har *) emallo(MAXLINE * sizeof(har));tag = (har *) emallo(MAXLINE * sizeof(har));



113seq = (har *) emallo(MAXSLEN * sizeof(har));*head = tail = NULL;while ((inLine = fgets(inLine, MAXLINE, fd)) != NULL) {if (inLine[0℄ == '>') {++ns;homp(inLine);strpy(tag, inLine + 1);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((inLine[0℄ != '>') && (status != NULL)) {seqLen += strlen(homp(inLine));strat(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf("Sequene %s > MAXSLEN (%d)\n", tag, seqLen);}if (ountBases(seq) > r) {tmp = getFASTASeq();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++;}fs = i;if (fs == 0) {fs = MAXSNAME - 1;}strnpy(tmp->name, tag, fs);tmp->seq = (har *) emallo((seqLen + 1) * sizeof(har));strpy(tmp->seq, seq);tmp->next = NULL;if (*head == NULL) {*head = tail = tmp;} else {tail->next = tmp;tail = tmp;} } else {if (fdRej != NULL) {++rej;fprintf(fdRej, "%d. %s\n", rej, tag);printSeq(fdRej, seq, NBASESONLINE, 1);} }}}*nSeqs = ns;*nRej = rej;free(inLine);free(tag);free(seq);}



114/* printSeq: print a fasta sequene */void printSeq(FILE * fd, har *seq, int bpl, int nblanks){ int i, j = 0;int len = strlen(seq);har *ptr;/* // original ode for(i=0; i<len; i++) { put (seq[i℄, fd); ++j; if (j ==bpl) { put ('\n', fd); j = 0; } } */ptr = seq;for (i = 0; i < len; i++) {put(*ptr, fd);++j;++ptr;if (j == bpl) {put('\n', fd);j = 0;}}if (j != 0)++nblanks;for (i = 0; i < nblanks; i++)put('\n', fd);} A.2.5 inremental./***************************************************************************inremental. - routines for inremental lustering-----------------------------------------------------begin : Wed Jan 12 2000author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude <string.h>#inlude "uiluster.h"#inlude "utils.h"#inlude "fasta.h"#inlude "options.h"#inlude "luster.h"#inlude "memory.h"#inlude "inremental.h"int readClusFiles(har *fname, Primary ** head, Primary ** tail,har *inFilesOut[℄, int div[℄){ FILE *fd_f;har *inFiles[MAXPRE℄;int i;int nCF;int nPrimes;int nSends;/* handle ase where no previously luster files are input */if (strmp(fname, "none") == 0)return 0;



115for (i = 0; i < MAXPRE; i++) {div[i℄ = -1;inFiles[i℄ = (har *) emallo((MAXFNAME + 1) * sizeof(har));}fd_f = fopen(fname, "r");if (fd_f == NULL)eprintf("an't open %s:", fname);i = 0;while ((inFiles[i℄ = fgets(inFiles[i℄, MAXFNAME, fd_f)) != NULL) {homp(inFiles[i℄);++i;if (i > MAXPRE) {eprintf(" too many previously lustered files.");}}nCF = i;flose(fd_f);/* read in the primaries from the pre-lustered files */*head = *tail = NULL;nPrimes = nSends = 0;for (i = 0; i < nCF; i++) {printf(" reading %s: ", inFiles[i℄);fd_f = fopen(inFiles[i℄, "r");if (fd_f == NULL)eprintf("an't open %s:", inFiles[i℄);nPrimes = nSends = 0;parseClusFile(fd_f, head, tail, &nPrimes, &nSends);printf("%d primaries, %d seondaries\n", nPrimes, nSends);if (i == 0)div[i℄ = nPrimes;elsediv[i℄ = div[i - 1℄ + nPrimes;flose(fd_f);}for (i = 0; i < nCF; i++) {printf("%s\n", inFiles[i℄);inFilesOut[i℄ = inFiles[i℄;}return (nCF);}int parseClusFile(FILE * fd, Primary ** head, Primary ** tail,int *nPrimes, int *nSends){ har *inLine; /* buffer to hold urrent input line */har *tag; /* the urrent tag line, sans �P */har *seq; /* buffer for urrent primary seq */int seqLen; /* length of urrent input primary seq */Primary *tmp; /* urrent input primary */Seondary *tmpS; /* urrent input seondary */Seondary *s;int fs; /* the index of the first spae in the tagline */int i;har *status;inLine = (har *) emallo(MAXLINE * sizeof(har));tag = (har *) emallo(MAXLINE * sizeof(har));seq = (har *) emallo(MAXSLEN * sizeof(har));*nPrimes = *nSends = 0;



116while ((inLine = fgets(inLine, MAXLINE, fd)) != NULL) {if (inLine[0℄ == '�' && inLine[1℄ == 'P') {++(*nPrimes);homp(inLine);strpy(tag, inLine + 4);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(homp(inLine));strat(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequene %s > MAXSLEN (%d)\n", tag, seqLen);}tmp = getPrimary();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++; }fs = i;if (fs == 0) {fs = MAXSNAME - 1;}tmp->name = (har *) emallo((MAXSNAME + 1) * sizeof(har));strnpy(tmp->name, tag, fs);tmp->seq = (har *) emallo((seqLen + 1) * sizeof(har));strpy(tmp->seq, seq);tmp->next = NULL;tmp->nHashes = 0;tmp->nTouhed = 0;tmp->nSeondaries = 0; /* fixme */tmp->hashes = NULL;tmp->indexes = NULL;tmp->headS = NULL;tmp->nextCP = NULL;if (*head == NULL) {*head = *tail = tmp;} else {(*tail)->next = tmp;*tail = tmp;}} else if (inLine[0℄ == '�' && inLine[1℄ == 'S') {++(*nSends);homp(inLine);strpy(tag, inLine + 4);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(homp(inLine));strat(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */



117fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequene %s > MAXSLEN (%d)\n", tag, seqLen);}tmpS = getSeondary();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {++i; }fs = i;if (fs == 0) {fs = MAXSNAME - 1;}tmpS->name = (har *) emallo((MAXSNAME + 1) * sizeof(har));strnpy(tmpS->name, tag, fs);tmpS->seq = (har *) emallo((seqLen + 1) * sizeof(har));strpy(tmpS->seq, seq);tmpS->next = NULL;ssanf(tag + fs, "%d %d %d %lf", &(tmpS->iP), &(tmpS->iS),&(tmpS->mathLen), &(tmpS->sore));if (tag[strlen(tag) - 2℄ == 'D') {tmpS->dir = FORWARD;} else if (tag[strlen(tag) - 2℄ == 'P') {tmpS->dir = REVCOMP;}/* Add the seondary to the urrent primary */if (tmp->headS == NULL) {tmp->headS = tmpS;} else {s = tmp->headS;while (s->next != NULL) {s = s->next;}s->next = tmpS;}++(tmp->nSeondaries);} else if (inLine[0℄ == '�' && inLine[1℄ == 'V') {homp(inLine);strpy(tag, inLine + 5);/* read the sequene */seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(homp(inLine));strat(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequene %s > MAXSLEN (%d)\n", tag, seqLen);}



118tmp->vp = (har *) emallo((seqLen * 2) + 1);strpy(tmp->vp, seq);tmp->vpLen = seqLen;tmp->maxvpLen = seqLen * 2;/* parse the tag line */ssanf(tag, "%d %d %d %d %d\n", tmp->nInternal, tmp->nBothExt,tmp->nFrontExt, tmp->nTailExt, tmp->nProblems);}}free(inLine);free(tag);free(seq);return (*nPrimes);} A.2.6 memory./***************************************************************************memory. - memory blok alloation routines---------------------------------------------begin : Tue De 14 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude "uiluster.h"#inlude "utils.h"#inlude "fasta.h"#inlude "options.h"#inlude "luster.h"#inlude "memory.h"stati GHTEntry *ghtMem;stati Primary *pMem;stati Seondary *sMem;stati FASTASeq *fsMem;/*stati har *seqMem; */stati int ghtIndex = GHTBLOCK;stati int fsIndex = FASTABLOCK;stati int pIndex = PRIMEBLOCK;stati int sIndex = SECNDBLOCK;GHTEntry *getGHTEntry(){ GHTEntry *tmp;if (ghtIndex >= GHTBLOCK) {/* Array is full, make a new one. */ghtMem = (GHTEntry *) emallo(GHTBLOCK * sizeof(GHTEntry));ghtIndex = 0;}tmp = ghtMem + ghtIndex;ghtIndex++;return (tmp);}Primary *getPrimary(){



119Primary *tmp;if (pIndex >= PRIMEBLOCK) {/* Array is full, make a new one. */pMem = (Primary *) emallo(PRIMEBLOCK * sizeof(Primary));pIndex = 0;}tmp = pMem + pIndex;pIndex++;return (tmp);}Seondary *getSeondary(){ Seondary *tmp;if (sIndex >= SECNDBLOCK) {/* Array is full, make a new one. */sMem = (Seondary *) emallo(SECNDBLOCK * sizeof(Seondary));sIndex = 0;}tmp = sMem + sIndex;sIndex++;return (tmp);}FASTASeq *getFASTASeq(){ FASTASeq *tmp;if (fsIndex >= FASTABLOCK) {/* Array is full, make a new one. */fsMem = (FASTASeq *) emallo(FASTABLOCK * sizeof(FASTASeq));fsIndex = 0;}tmp = fsMem + fsIndex;fsIndex++;return (tmp);} A.2.7 options./***************************************************************************options. - parse options for UIluster----------------------------------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude "getopt.h"#inlude "uiluster.h"#inlude "options.h"#inlude "utils.h"/* alled by main to get the user-defined parameters. options anome from either the ommand line or the onfiguration file. theommand line has priority*/int getopts(Options * o, int arg, har **argv)



120{ int ;int option_index = 0;stati strut option long_opts[℄ = {{"preClus", 1, 0, 0},{"rejCrit", 1, 0, 0},{"hashSize", 1, 0, 0},{"startSkip", 1, 0, 0},{"endSkip", 1, 0, 0},{"mathLen", 1, 0, 0},{"errLimit", 1, 0, 0},{"maskChar", 1, 0, 0},{"repik", 0, 0, 0},{"tryRevC", 0, 0, 0},{"hitThresh", 1, 0, 0},{"wrongPen", 1, 0, 0},{"gapPen", 1, 0, 0},{"wrongPen", 1, 0, 0},{"keepGoing", 0, 0, 0},{"vPrimary", 0, 0, 0},{"help", 0, 0, 0},{0, 0, 0, 0}};/* These aren't very good short option names */stati har *short_opts = "F:R:H:S:s:M:E:C:h:P:p:";/* initially set options to hard-oded defaults */strpy((*o).preCFile, "none");(*o).rejCrit = 100;(*o).hashSize = 8;(*o).startSkip = 18;(*o).endSkip = 0;(*o).lenToMath = 40;(*o).errLimit = 2;(*o).maskChar = 'X';(*o).repik = 0;(*o).tryRevC = 0;(*o).hitThresh = 16;(*o).wrongPen = 1;(*o).gapPen = 1;(*o).keepGoing = 0;(*o).vPrimary = 0;/* parse ommand line */ = getopt_long(arg, argv, short_opts, long_opts, &option_index);while ( != -1) {swith () {ase 0:if (strmp(long_opts[option_index℄.name, "preClus") == 0) {strpy((*o).preCFile, optarg);}if (strmp(long_opts[option_index℄.name, "rejCrit") == 0) {(*o).rejCrit = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "hashSize") == 0) {(*o).hashSize = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "startSkip") == 0) {(*o).startSkip = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "endSkip") == 0) {(*o).endSkip = atoi(optarg);}



121if (strmp(long_opts[option_index℄.name, "mathLen") == 0) {(*o).lenToMath = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "errLimit") == 0) {(*o).errLimit = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "maskChar") == 0) {if (strlen(optarg) == 1) {(*o).maskChar = optarg[0℄;} else {wprintf(" mask har an only be one letter");return (FAILURE);} }if (strmp(long_opts[option_index℄.name, "hitThresh") == 0) {(*o).hitThresh = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "wrongPen") == 0) {(*o).wrongPen = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "gapPen") == 0) {(*o).gapPen = atoi(optarg);}if (strmp(long_opts[option_index℄.name, "tryRevC") == 0) {(*o).tryRevC = 1;}if (strmp(long_opts[option_index℄.name, "repik") == 0) {(*o).repik = 1;}if (strmp(long_opts[option_index℄.name, "keepGoing") == 0) {(*o).keepGoing = 1;}if (strmp(long_opts[option_index℄.name, "vPrimary") == 0) {(*o).vPrimary = 1;}if (strmp(long_opts[option_index℄.name, "help") == 0) {printUsage();return FAILURE;}break;ase 'F':strpy((*o).preCFile, optarg);break;ase 'R':(*o).rejCrit = atoi(optarg);break;ase 'H':(*o).hashSize = atoi(optarg);break;ase 'S':(*o).startSkip = atoi(optarg);break;ase 's':(*o).endSkip = atoi(optarg);break;ase 'M':(*o).lenToMath = atoi(optarg);break;ase 'E':(*o).errLimit = atoi(optarg);break;ase 'C':if (strlen(optarg) == 1) {



122(*o).maskChar = optarg[0℄;} else {wprintf(" mask har an only be one letter");return (FAILURE);}break;ase 'h':(*o).hitThresh = atoi(optarg);break;ase 'P':(*o).wrongPen = atoi(optarg);break;ase 'p':(*o).gapPen = atoi(optarg);break;default:wprintf(" unexpeted ommand line option option -- %o", );return (FAILURE);} = getopt_long(arg, argv, short_opts, long_opts, &option_index);}/* get the name of the input fasta file */if (optind == (arg - 1)) {strpy((*o).inFile, argv[optind℄);} else if (optind == (arg)) {wprintf(" no input FASTA file speified\n");printUsage();return FAILURE;} else if (optind < (arg - 1)) {wprintf(" too many non-option parameters -- only speify one input FASTA file.\n");printUsage();return FAILURE;}return SUCCESS;}/* prints usage information */void printUsage(){ printf("%s %s Usage: uiluster [options℄ input_fasta_file\n",progname(), getversion());printf("\n");printf(" Valid Options: (defaults are in parenthesis)");printf("\n");printf(" -F, --preClus speifies the preClustered infile (none)\n");printf(" -R, --rejCrit speifies the rejetion riteria (100 bases)\n");printf(" -H, --hashSize speifies the hash size ( 8 bases)\n");printf(" -S, --startSkip speifies the start skip ( 18 bases)\n");printf(" -s, --endSkip speifies the end skip ( 0 bases)\n");printf(" -M, --mathLen speifies the length to math ( 40 bases)\n");printf(" -E, --errLimit speifies the error limit ( 2 bases)\n");printf(" -C, --maskChar speifies the mask harater ('X')\n");printf(" -h, --hitThresh speifies the hit threshold (16)\n");



123printf(" -P, --wrongPen speifies the wrong penalty (1)\n");printf(" -p, --gapPen speifies the gap penalty (1)\n");printf(" --repik repik luster primaries (off)\n");printf(" --tryRevC hek reverse ompliment (off)\n");printf(" --keepGoing perform exhaustive searh (off)\n");printf(" --vPrimary generate virtual primary (off)\n");printf(" --help view this message\n");printf("\n\n");}/* prints all user-defined parameters to the stream fd */void printopts(FILE * fd, Options o){ fprintf(fd, "Using Options:\n");fprintf(fd, " Input File = %s\n", o.inFile);fprintf(fd, " Prelus File = %s\n", o.preCFile);fprintf(fd, " Rejet Crit = %4d Hash Size = %4d\n", o.rejCrit,o.hashSize);fprintf(fd, " Start Skip = %4d End Skip = %4d\n",o.startSkip, o.endSkip);fprintf(fd, " Math Len = %4d Error Lim = %4d\n",o.lenToMath, o.errLimit);fprintf(fd, " Mask Char = %4 Repik = %4d\n", o.maskChar,o.repik);fprintf(fd, " Try RevC = %4d Hit Thresh = %4d\n", o.tryRevC,o.hitThresh);fprintf(fd, " Wrong Pen = %4d Gap Pen = %4d\n", o.wrongPen,o.gapPen);fprintf(fd, " Keep Going = %4d vPrimary = %4d\n",o.keepGoing, o.vPrimary);} A.2.8 qsort./***************************************************************************qsort. - stand-alone quik sort----------------------------------begin : Mon De 13 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stddef.h>#inlude <stdlib.h>#inlude "qsort.h"/* Do a quik sort on data[℄ while maintaining onsistany with index[℄.NOTE: This sort routine sorts data[1..n℄ NOT data[0..n-1℄.The aller should aount for this.based on ode in Numerial Reipes in C, Seond Edition*/void qsortWIndx(unsigned long n, int data[℄, int index[℄){ unsigned long i, ir = n, j, k, l = 1;int *istak, jstak = 0;int a, b, temp;



124istak = ivetor(1, NSTACK);for (;;) {if (ir - l < M) {for (j = l + 1; j <= ir; j++) {a = data[j℄;b = index[j℄;for (i = j - 1; i >= l; i--) {if (data[i℄ <= a)break;data[i + 1℄ = data[i℄;index[i + 1℄ = index[i℄;}data[i + 1℄ = a;index[i + 1℄ = b;}if (!jstak) {free_ivetor(istak, 1, NSTACK);return;}ir = istak[jstak℄;l = istak[jstak - 1℄;jstak -= 2;} else {k = (l + ir) >> 1;SWAP(data[k℄, data[l + 1℄)SWAP(index[k℄, index[l + 1℄)if (data[l℄ > data[ir℄) {SWAP(data[l℄, data[ir℄)SWAP(index[l℄, index[ir℄)}if (data[l + 1℄ > data[ir℄) {SWAP(data[l + 1℄, data[ir℄)SWAP(index[l + 1℄, index[ir℄)}if (data[l℄ > data[l + 1℄) {SWAP(data[l℄, data[l + 1℄)SWAP(index[l℄, index[l + 1℄)}i = l + 1;j = ir;a = data[l + 1℄;b = index[l + 1℄;for (;;) {doi++;while (data[i℄ < a);doj--;while (data[j℄ > a);if (j < i)break;SWAP(data[i℄, data[j℄)SWAP(index[i℄, index[j℄)}data[l + 1℄ = data[j℄;data[j℄ = a;index[l + 1℄ = index[j℄;index[j℄ = b;jstak += 2;if (jstak > NSTACK)nrerror("NSTACK too small in sort2.");if (ir - i + 1 >= j - 1) {istak[jstak℄ = ir;istak[jstak - 1℄ = i;ir = j - 1;



125} else {istak[jstak℄ = j - 1;istak[jstak - 1℄ = l;l = i;}}}}/* display an error and exit */void nrerror(har error_text[℄){ fprintf(stderr, "Sorting run-time error...\n");fprintf(stderr, "%s\n", error_text);fprintf(stderr, "...now exiting to system...\n");exit(1);}/* alloate memory for an integer array */int *ivetor(long nl, long nh){ int *v;v = (int *) mallo((size_t) ((nh - nl + 1 + NR_END) * sizeof(int)));if (!v)nrerror("alloation failure in ivetor()");return v - nl + NR_END;}/* free an integer aray */void free_ivetor(int *v, long nl, long nh){ free((FREE_ARG) (v + nl - NR_END));} A.2.9 utils./***************************************************************************utils. - some useful utilities for UIluster-----------------------------------------------begin : Sun De 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude <stdarg.h>#inlude <unistd.h>#inlude <time.h>#inlude <string.h>#inlude <errno.h>#inlude "utils.h"stati har *name = NULL; /* Program name for messages */stati har *version = NULL; /* Program version */stati int m; /* total num mallo alls made *//* returns the total num of mallo alls made so far */int nmallos(){ return m;}/* store name of program */void setprogname(har *str)



126{ name = estrdup(str);}/* return stored name of program */har *progname(void){ return name;}/* store version number */void setversion(har *str){ version = estrdup(str);}/* return stored version number */har *getversion(void){ return version;}/* print error message and exit program */void eprintf(har *fmt, ...){ va_list args;fflush(stdout);if (progname() != NULL) {fprintf(stderr, "%s:", progname());}/* print the error message */va_start(args, fmt);vfprintf(stderr, fmt, args);va_end(args);/* print the errno if the put a ':' at end of fmt */if (fmt[0℄ != '\0' && fmt[strlen(fmt) - 1℄ == ':') {fprintf(stderr, " %s", strerror(errno));}fprintf(stderr, "\n");exit(EXIT_FAILURE);}/* print warning message */void wprintf(har *fmt, ...){ va_list args;fflush(stdout);if (progname() != NULL) {fprintf(stderr, "%s:", progname());}/* print the warning message */va_start(args, fmt);vfprintf(stderr, fmt, args);va_end(args);/* print the errno if the put a ':' at end of fmt */if (fmt[0℄ != '\0' && fmt[strlen(fmt) - 1℄ == ':') {fprintf(stderr, " %s", strerror(errno));}fprintf(stderr, "\n");



127}/* dupliate a string, terminate program if mallo error ours */har *estrdup(har *s){ har *t;/* would like to know if we aused the mallo error so all mallodiretly... not emallo() */++m; /* inrement mallo alls ounter */t = (har *) mallo(strlen(s) + 1);if (t == NULL) {eprintf("estrdup(\"%.20s\") failed:", s);}strpy(t, s);return t;}/* all mallo, terminate program if mallo error ours */void *emallo(size_t n){ void *p;++m; /* inrement mallo alls ounter */p = mallo(n);if (p == NULL) {printf("mallo of %u bytes failed:", n);eprintf("tot # mallo alls: %d", m);}return p;}/* all allo, terminate program if allo error ours */void *eallo(size_t n, size_t s){ void *p;++m; /* inrement mallo alls ounter */p = allo(n, s);if (p == NULL) {printf("allo of %u bytes failed:", n);eprintf("tot # mallo alls: %d", m);}return p;}/* all reallo, terminate program if reallo error ours */void *ereallo(void *p, size_t s){ ++m; /* inrement mallo alls ounter */p = reallo(p, s);if (p == NULL) {printf("reallo of %u bytes failed:", s);eprintf("tot # mallo alls: %d", m);}return p;}/* remove '\n' from end of string if is there... like perl's homp */har *homp(har *in){ int len = strlen(in);if (in[len - 1℄ == '\n') {in[len - 1℄ = '\0';}



128return (in);}/* ount the number of bases (A,C,G,T not X or N) in a DNA string */int ountBases(har *in){ int i; /* ounter */int n = 0; /* number of bases */int len = strlen(in);for (i = 0; i < len; i++) {if ((in[i℄ == 'A') || (in[i℄ == 'C') || (in[i℄ == 'G')|| (in[i℄ == 'T')) {++n;}}return n;}/* raise base to the exp power */int ipower(int base, int exp){ int i, ret = 1;for (i = 0; i < exp; i++) {ret *= base;}return (ret);}/* reverse ompliment a DNA string, assume out big enough to store in */void revComp(har *in, int len){ int j = 0, i;/* reverse the string */for (i = (len - 1); i > ((len - 1)) / 2; i--) {in[j℄ = in[i℄;j++;}/* ompliment the string */for (i = 0; i < len; i++) {if (in[i℄ == 'A')in[i℄ = 'T';else if (in[i℄ == 'T')in[i℄ = 'A';else if (in[i℄ == 'C')in[i℄ = 'G';else if (in[i℄ == 'G')in[i℄ = 'C';else if (in[i℄ == 'a')in[i℄ = 't';else if (in[i℄ == 't')in[i℄ = 'a';else if (in[i℄ == '')in[i℄ = 'g';else if (in[i℄ == 'g')in[i℄ = '';}}/* print niely the differene between two times */har *printTime(time_t startTime, time_t stopTime){ int elapsedTime;int elapsedDays;



129int elapsedHrs;int elapsedMins;int elapsedSes;har *out;elapsedTime = (int) difftime(stopTime, startTime);if (elapsedTime >= 86400) {elapsedDays = elapsedTime / 86400;elapsedTime = elapsedTime % 86400;} else {elapsedDays = 0;}if (elapsedTime >= 3600) {elapsedHrs = elapsedTime / 3600;elapsedTime = elapsedTime % 3600;} else {elapsedHrs = 0;}if (elapsedTime >= 60) {elapsedMins = elapsedTime / 60;elapsedTime = elapsedTime % 60;} else {elapsedMins = 0;}elapsedSes = elapsedTime;/* hange this so 1000 not hard oded - opps */out = (har *) emallo(1000 * sizeof(har));sprintf(out, "%d days, %d hours, %d mins, %d ses",elapsedDays, elapsedHrs, elapsedMins, elapsedSes);return (out);} A.2.10 bl2seq./***************************************************************************bl2seq. - runs bl2seq on two sequenes-----------------------------------------begin : Sun Mar 18 2001author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#inlude <stdio.h>#inlude <stdlib.h>#inlude <unistd.h>#inlude <string.h>#inlude <errno.h>#inlude "utils.h"#inlude "bl2seq.h"void bl2seq(har *seq1, int seq1Len, har *seq2, int seq2Len,bl2seq_hit * hits, int *nHits){ FILE *SEQ1;FILE *SEQ2;FILE *OUT;int i;int n = 0;har *p;/* open temporary files to store sequenes to bl2seq */SEQ1 = fopen("/tmp/seq1.fasta", "w+");SEQ2 = fopen("/tmp/seq2.fasta", "w+");



130if (SEQ1 == NULL || SEQ2 == NULL) {eprintf("an't open files for bl2seq\n");}/* bl2seq disards X's so we must be sure to hange them *//* print seq1 to file, hanging X's to N's */fprintf(SEQ1, ">seq1\n");for (i = 0; i < seq1Len; i++) {if (seq1[i℄ != 'X') {fput(seq1[i℄, SEQ1);} else {fput('N', SEQ1);}}fprintf(SEQ1, "\n");flose(SEQ1);/* print seq2 to file, hanging X's to N's */fprintf(SEQ2, ">seq2\n");for (i = 0; i < seq2Len; i++) {if (seq2[i℄ != 'X')fput(seq2[i℄, SEQ2);elsefput('N', SEQ2);}fprintf(SEQ2, "\n");flose(SEQ2);/* all bl2seq on the two sequenes */all_bl2seq("/tmp/seq1.fasta", "/tmp/seq2.fasta", "/tmp/bl2seq.out");/* open the bl2seq output file */OUT = fopen("/tmp/bl2seq.out", "r");if (OUT == NULL) {eprintf("an't open bl2seq output file");}/* parse the hits from the file. */*nHits = parse_hits(OUT, hits);flose(OUT);}int parse_hits(FILE * fd, bl2seq_hit * hits, int maxHits){ har inLine[BL2SEQ_MAXLINE℄;int state = STATE_INIT;int urHit = 0;int in;int isEnd;int nStarts, nLens, nStrands;int sb1, sb2, lastsb1, lastsb2;int lastlen;int laststrand1, laststrand2;while (fgets(inLine, BL2SEQ_MAXLINE, fd) != NULL) {if (state == STATE_INIT) {if (strstr(inLine, "starts {") != NULL) {state = STATE_STARTS;nStarts = 0;isEnd = 0;// printf("START HIT %d\n", urHit);// printf("STARTS = \n");}if (strstr(inLine, "lens {") != NULL) {state = STATE_LENS;



131nLens = 0;isEnd = 0;// printf("LENS = \n");}if (strstr(inLine, "strands {") != NULL) {state = STATE_STRANDS;nStrands = 0;isEnd = 0;// printf("STRANDS = \n");}} else {if (state != STATE_STRANDS) {/* parse a number from the input line */in = atoi(inLine);} else {/* parse the diretion from the input line */if (strstr(inLine, "plus")) {in = PLUS;} else {in = MINUS;} }/* determine if this is the last entry at the urrent state */if (strstr(inLine, "}") != NULL) {isEnd = 1;}if (state == STATE_STARTS) {if (nStarts == 0) {sb1 = in;} else if (nStarts == 1) {sb2 = in;}/* always store the last start pair */if ((nStarts % 2) == 0) {lastsb1 = in;} else {lastsb2 = in;}++nStarts;} else if (state == STATE_LENS) {lastlen = in;++nLens;} else if (state == STATE_STRANDS) {if ((nStrands % 2) == 0) {laststrand1 = in;} else {laststrand2 = in;}++nStrands;}if (isEnd == 1) {/* if STATE_STRANDS, we're at the end of a hit */if (state == STATE_STRANDS) {/* store the urrent hit */hits[urHit℄.sb1 = sb1;hits[urHit℄.eb1 = lastsb1 + lastlen - 1;hits[urHit℄.sb2 = sb2;hits[urHit℄.eb2 = lastsb2 + lastlen - 1;/* figure out the dir value to store */if ((laststrand1 == PLUS) && (laststrand2 == PLUS)) {hits[urHit℄.dir = PP;



132} else if ((laststrand1 == PLUS) && (laststrand2 == MINUS)) {hits[urHit℄.dir = PM;} else if ((laststrand1 == MINUS) && (laststrand2 == PLUS)) {hits[urHit℄.dir = MP;} else if ((laststrand1 == MINUS) && (laststrand2 == MINUS)) {hits[urHit℄.dir = MM;}++urHit;}state = STATE_INIT;}}}return urHit;}/* environ defined in unistd.h */extern har **environ;/* simple wrapper funtion to all bl2seq.* seq1 and seq2 are the two input file names.* out is the output filename to use.*/int all_bl2seq(har *seq1, har *seq2, har *out){ int pid, status;if (seq1 == NULL || seq2 == NULL) {return 1;}pid = fork();if (pid == -1) {return -1;}/* setup the arguments to pass to bl2seq */if (pid == 0) {har *argv[13℄;argv[0℄ = "bl2seq";argv[1℄ = "-i";argv[2℄ = seq1;argv[3℄ = "-j";argv[4℄ = seq2;argv[5℄ = "-p";argv[6℄ = "blastn";argv[7℄ = "-o";argv[8℄ = "/dev/null";argv[9℄ = "-a";argv[10℄ = out;argv[11℄ = "-FF";argv[12℄ = 0;exeve("/mnt/r0-blastdb/blast-bin/bl2seq", argv, environ);exit(127);}/* try until for hild, retrying if we're interrupted */do {if (waitpid(pid, &status, 0) == -1) {if (errno != EINTR) {return -1;}} else {return status;}} while (1);}
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